Department of Mathematics, University of Michigan
 Complex Analysis Qualifying Exam
 May 3, 2023, $2.00 \mathrm{pm}-5.00 \mathrm{pm}$

Problem 1: (a) Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk and $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function satisfying $\Re f(z)>0, z \in \mathbb{D}$. Show that $\left|f^{\prime}(0)\right| \leq 2 \Re f(0)$. (b) Suppose instead that $f(\mathbb{D}) \subset \mathbb{D}-\{0\}$. Prove that $\left|f^{\prime}(0)\right| \leq 2 e^{-1}$.

Solution: (a) This follows from the Schwarz lemma by mapping the right half plane to \mathbb{D} such that $f(0) \rightarrow 0$. The mapping is $w \rightarrow[w-f(0)][w+\overline{f(0}]$. By Schwarz the function $g(\cdot)$ satisfies $\left|g^{\prime}(0)\right| \leq 1$. We have

$$
g(z)=\frac{f(z)-f(0)}{f(z)+\overline{f(0)}}=1-\frac{[f(0)+\overline{f(0)}]}{f(z)+\overline{f(0)}}, \quad g^{\prime}(z)=\frac{[f(0)+\overline{f(0)}] f^{\prime}(z)}{[f(z)+\overline{f(0)}]^{2}} .
$$

We conclude that

$$
\left|f^{\prime}(0)\right| \leq f(0)+\overline{f(0)}=2 \Re f(0)
$$

(b) Note that $h(z)=-\log f(z)$ is well defined from Cauchy's theorem by the integral formula

$$
h(z)=-\int_{0}^{z} \frac{f^{\prime}\left(z^{\prime}\right)}{f\left(z^{\prime}\right)} d z^{\prime}+\text { constant }
$$

for a suitable constant such that $\Re h(z)=-\log |f(z)|$. . Then $h(\cdot)$ is holomorphic on \mathbb{D} and $\Re h(\cdot)>0$. Hence by (a) $\left|h^{\prime}(0)\right| \leq 2 \Re h(0)$, which implies that $\left|f^{\prime}(0)\right| \leq$ $2 \max _{0<\alpha<1} \alpha|\log \alpha|=2 e^{-1}$ 。

Problem 2: Use contour integration to evaluate the integral

$$
\int_{0}^{\infty} \frac{\log x}{(x+1)^{2} \sqrt{x}} d x
$$

Solution: We make the substitution $x=z^{2}$, whence it is sufficient to evaluate the integral

$$
4 \int_{0}^{\infty} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z=2 \Re \int_{-\infty}^{\infty} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z
$$

Now we use the residue theorem for the region bounded by the contour Γ_{R} which consists of the line segment $\{z \in \mathbb{R}:-R \leq z \leq R\}$ and the semicircle $\{z \in \mathbb{C}$: $\Im z>0,|z|=R\}$. Then if $R>1$ one has

$$
\int_{\Gamma_{R}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z=2 \pi i \operatorname{Res}\left(\frac{\log z}{\left(z^{2}+1\right)^{2}}, i\right)
$$

To evaluate the residue we write

$$
\frac{\log z}{\left(z^{2}+1\right)^{2}}=\frac{f(z)}{(z-i)^{2}}=\frac{f(i)}{(z-i)^{2}}+\frac{f^{\prime}(i)}{(z-i)}+\ldots, \quad f(z)=\frac{\log z}{(z+i)^{2}} .
$$

We have that

$$
f^{\prime}(z)=\frac{1}{z(z+i)^{2}}-\frac{2 \log z}{(z+i)^{3}}, \quad f^{\prime}(i)=\frac{i}{4}+\frac{\pi}{8} .
$$

Hence the integral over Γ_{R} is $-\pi / 2+\pi^{2} i / 4$. Finally we note that

$$
\left|\int_{\Im z>0,|z|=R} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z\right| \leq \frac{\pi R \log R}{\left(R^{2}-1\right)^{2}} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

Hence the value of the integral in the problem is $-\pi$.
Problem 3: Find a conformal mapping from the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ onto the region $\mathbb{U}=\left\{z=x+i y \in \mathbb{C}: y<x^{2}\right\}$. You may write your solution as a composition of simpler maps. Make sure to explain why each of your simpler maps is conformal.

Solution: We need to map the unit circle onto the parabola $y=x^{2}$. We first begin by finding a map which takes a line onto the parabola. Consider the line $\Re z=\alpha$, so $\{\alpha+i y \in \mathbb{C}: y \in \mathbb{R}\}$. The image under the mapping $w=z^{2}$ is $\left\{\alpha^{2}-y^{2}+2 i \alpha y \in \mathbb{C}: y \in \mathbb{R}\right\}$. Writing $w=\xi+i \eta$ the image is $\{\xi+i \eta \in \mathbb{C}$: $\left.\eta^{2}=4 \alpha^{2}\left(\alpha^{2}-\xi\right)\right\}$. Taking $\alpha=1 / 2$ this becomes $\eta^{2}=1 / 4-\xi$. We can map this to the parabola $y=x^{2}$ by translation and rotation, so $w_{1}=w-1 / 4$ and $w_{2}=-i w_{1}$. Noting that 0 maps to $i / 4$ we see that the region $\Re z>1 / 2$ maps to the region $y<x^{2}$. Finally we need to map \mathbb{D} onto the half plane $\Re z>1 / 2$. Note that $w=(1-z) /(1+z)$ takes \mathbb{D} onto the half plane $\Re w>0$, whence the mapping $w=(1-z) /(1+z)+1 / 2$ maps to the region $\Re w>1 / 2$. The only one of these mappings which is not necessarily conformal is the 2-1 mapping $w=z^{2}$. However it does map the region $\Re z>1 / 2$ conformally.

Problem 4: Let $f(\cdot)$ be a meromorphic function on \mathbb{C} with a finite number of zeros and poles. Assume further there are constants A, C with $A \neq 0$ such that

$$
|f(z)-A| \leq \frac{C}{|z|^{2}} \quad \text { for all large }|z|
$$

(a) Prove that $f(\cdot)$ is a rational function.
(b) Suppose the poles and zeros of $f(\cdot)$ in \mathbb{C} are z_{1}, \ldots, z_{k}, with corresponding multiplicities $m_{1}, \ldots, m_{k} \in \mathbb{Z}$. Show that $m_{1} z_{1}+\cdots m_{k} z_{k}=0$.

Solution: (a) Since $\lim _{|z| \rightarrow \infty} f(z)=A$ the function $f(\cdot)$ is meromorphic on the Riemann sphere and therefore a rational function.
(b) We have from the argument principle that

$$
\frac{1}{2 \pi i} \int_{|z|=R} \frac{z f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{k} m_{j} z_{j} \quad \text { if } R>\max \left\{\left|z_{j}\right|: 1 \leq j \leq k\right\}
$$

The Laurent expansion of $f(\cdot)$ about $z=\infty$ is $f(z)=A+a_{2} / z^{2}+a_{3} / z^{3}+\ldots$ Hence

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq \frac{4\left|a_{2}\right|}{A|z|^{2}} \quad \text { if }|z|=R, \quad \text { for all sufficiently large } R .
$$

We conclude that

$$
\left|\frac{1}{2 \pi i} \int_{|z|=R} \frac{z f^{\prime}(z)}{f(z)} d z\right| \leq \frac{4\left|a_{2}\right|}{A R} \rightarrow 0 \quad R \rightarrow \infty
$$

Problem 5: Let $\mathcal{D} \subset \mathbb{C}$ be a domain (open and connected), and $f_{n}: \mathcal{D} \rightarrow$ $\mathbb{C}, n=1,2, \ldots$, a sequence of holomorphic functions. Suppose further there is a continuous function $f: \mathcal{D} \rightarrow \mathbb{C}$ such that

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}(x+i y)-f(x+i y)\right| d x d y=0 \quad \text { on all disks } \mathrm{D} \subset \mathcal{D}
$$

Prove that f is a holomorphic function.
Solution: We use the Cauchy theorem. Thus suppose \mathcal{D} contains the disk $\{z \in$ $\left.\mathbb{C}:\left|z-z_{0}\right|<r_{2}\right\}$ and $0<r_{1}<r_{2}$. Then if $|z|<r_{1}<r_{2}$, one has

$$
\begin{aligned}
f_{n}\left(z+z_{0}\right)= & \frac{1}{2 \pi\left(r_{2}-r_{1}\right)} \int_{r_{1}}^{r_{2}} \int_{0}^{2 \pi} \frac{f_{n}\left(z_{0}+r e^{i \theta}\right) r e^{i \theta} d r d \theta}{z-r e^{i \theta}} \\
& =\frac{1}{2 \pi\left(r_{2}-r_{1}\right)} \int_{r_{1}^{2}<x^{2}+y^{2}<r_{2}^{2}} \frac{f_{n}\left(z_{0}+x+i y\right)(x+i y) d x d y}{\sqrt{x^{2}+y^{2}}[z-(x+i y)]}
\end{aligned}
$$

From the assumption of the problem and the above representation the functions $z \rightarrow f_{n}\left(z+z_{0}\right),|z|<r_{1}-\varepsilon, n=1,2, \ldots$, form a uniformly Cauchy sequence for any $\varepsilon>0$. Hence by the Weierstrasse theorem there exists a holomorphic function $g(\cdot)$ on the disk $\left\{|z|<r_{1}\right\}$ such that $\lim _{n \rightarrow \infty} f_{n}\left(z+z_{0}\right)=g(z)$. To show $f\left(z+z_{0}\right)=g(z)$ we observe from our limiting procedure that

$$
\int_{D}\left|g(x+i y)-f\left(z_{0}+x+i y\right)\right| d x d y=0 \quad \text { on the disk } D=\left\{|z|<r_{1}\right\}
$$

