
Department of Mathematics, University of Michigan
Analysis Qualifying Exam, May 4, 2022

Morning Session, 9.00 AM-12.00

Problem 1: Suppose f : (0, 1)→ R is integrable and define a function g : (0, 1)→
R by

g(x) =

∫ 1

x

f(t)

t
dt , 0 < x < 1.

Prove that g is also integrable.

Solution: Consider a function F : (0, 1)× (0, 1) defined by

F (x, t) =

{
f(t)
t
, if 0 < x < t < 1;

0, otherwise.

Then by Tonelli’s theorem,∫ 1

0

∫ 1

0

|F (x, t)| dx dt =

∫ 1

0

|f(t)| dt < +∞,

so by Fubini’s theorem, F is integrable. Applying Fubini’s theorem again, we
conclude that∫ 1

0

|g(x)| dx =

∫ 1

0

∣∣∣∣∫ 1

x

f(t)

t
dt

∣∣∣∣ dx ≤ ∫ 1

0

∫ 1

0

|F (x, t)| dx dt < +∞.

Problem 2: Let f : [0, 1] → R be a positive function such that f and 1/f are
integrable. Prove that log f is integrable and

lim
q→∞

q ·
(∫ 1

0

f(x)1/q dx− 1

)
=

∫ 1

0

log f(x) dx .

Solution: For any y > 0, log y < y. Hence, | log f | ≤ max(f, 1/f) ≤ f + 1/f
which implies that log f is integrable.
Consider a function φ : (0,∞)× R→ R defined by

φ(t, y) =
ety − 1

t
.

If y ≥ 0, then using the Taylor expansion we get

φ(t, y) =
∞∑
n=1

1

n!
tn−1yn,

and so φ is an increasing function of t. Therefore,

φ(t, y) ≤ φ(1, y) = ey − 1 for any t ∈ (0, 1).



Applying this with t = 1/q, y = log f(x), we obtain

q
(
f(x)1/q − 1

)
≤ f(x)− 1 wheneverf(x) > 1 and q > 1.

On the other hand, if y < 0, then

|φ(t, y)| ≤ −φ(t, y)e−ty =
e−ty − 1

t
,

and the previous argument yields

q
∣∣f(x)1/q − 1

∣∣ ≤ 1

f(x)
− 1 whenever 0 < f(x) < 1 and q > 1.

Therefore, the functions Fq(x) = q
(
f(x)1/q − 1

)
satisfy the inequality

|Fq(x)| ≤ f(x) +
1

f(x)
− 1 for any q > 1,

where the right-hand side is an integable function. L’Hopital’s rule implies

lim
q→∞

Fq(x) = lim
q→∞

f(x)1/q · log f(x) = log f(x)

for any x ∈ (0, 1). Thus, the result follows from the Lebesgue Dominated Conver-
gence Theorem.

Problem 3: Let (Ω,A, µ) be a finite measure space. Let C ⊂ A be a sub-sigma
algebra ofA. Prove that for any f ∈ L1(µ) there exists a C−measurable integrable
function g such that ∫

E

g dµ =

∫
E

f dµ for any E ∈ C .

Solution: Define a function ν : C → C by

ν(E) =

∫
E

f dµ.

Since f ∈ L1(µ), ν is a complex measure on C and ν � µ. Let g be the Radon-
Nikodym derivative of ν with respect to µ: g = dν

dµ
. The existence, C-measurability,

and integrability of g are guaranteed by the Lebesgue-Radon-Nikodym theorem.
Then g satisfies the equality above.

Problem 4: Let fn : [0, 1] → R, n = 1, 2, . . . , be a sequence of non-negative
Lebesgue measurable functions such that limn→∞ fn(x) = 0 for almost every x ∈
[0, 1]. Prove there exists an infinite subsequence fnk

, k = 1, 2, . . . , such that the
series

∞∑
k=1

fnk
(x) converges for almost every x ∈ [0, 1] .

Hint: Use Egorov’s theorem.



Solution: By Egorov’s theorem, for any k ∈ N there exists a set Ek with

m(Ek) > 1− 1

k

such that fn → 0 uniformly on Ek. Passing if necessary from Ek to Ẽk =
⋃k
j=1Ej,

we may assume that E1 ⊂ E2 ⊂ . . . Using induction, we can construct an increas-
ing sequence {nk}∞k=1 ⊂ N such that

|fm(x)| ≤ 2−k for any m ≥ nk and x ∈ Ek.
Fix l ∈ N. Since the sets Ek are nested, any x ∈ El satisfies |fnk

(x)| ≤ 2−k for all
k ≥ l. Therefore,

∞∑
k=1

|fnk
(x)| ≤

nl−1∑
k=1

|fnk
(x)|+

∞∑
k=nl

2−k <∞.

By continuity of the Lebesgue measure,

m

(
[0, 1] \

∞⋃
l=1

El

)
= 0.

The result follows.

Problem 5: Suppose for n = 1, 2, . . . , the functions Fn : [a, b]→ R are increasing
and nonnegative, and that the function F with domain [a, b] defined by

F (x) =
∞∑
n=1

Fn(x) ,

is finite for all x ∈ [a, b]. Prove that the derivative F ′(x) exists a.e. and

F ′(x) =
∞∑
n=1

F ′n(x) for almost every x ∈ [a, b].

Solution: The function F is increasing, and so a.e. differentiable.

To prove the equality, defineG(x) = limh→0+ F (x+h) andGn(x) = limh→0+ Fn(x+
h). Then the functions G and Gn are increasing and right-continuous. Since F is
increasing, it has only countably many points of discontinuity, and if x is a point
of continuity of F and G is differentiable at x, then F is differentiable at x as well
with F ′(x) = G′(x). Hence, it is enough to prove that

G′(x) =
∞∑
n=1

G′n(x) for almost all x ∈ [a, b].

The function G defines a Lebesgue-Sieltjes measure µG on [a, b] by

µG((c, d]) = G(d)−G(c) for any (c, d] ⊂ [a, b].



Denote the Lebesgue measure bym. We can define the Lebesgue-Stieltjes measures
µGn in a similar way. Let

µG = λ+ η, λ� m, η ⊥ m

be the Lebesgue decomposition of µG into the absolutely continuous and the sin-
gular part, and let dλ = g dx, i.e., g = dµ

dm
and g ∈ L1([a, b]). By the Lebesgue

Differentiation Theorem, G′ = g a.e.
Similarly, let

µn = λn + ηn, λn � m, ηn ⊥ m, gn =
dµm
dm

, gn ∈ L1([a, b]).

Note that since µG and µGn are positive measures, all the measures here are
positive. Set

g̃ =
∞∑
n=1

gn, λ̃ =
∞∑
n=1

λn and η̃ =
∞∑
n=1

ηn,

and as before, G′n = gn a.e. Then µG = λ̃+ η̃, and so both measures are finite.
For any Borel set E ⊂ [a, b],

λ̃(E) =
∞∑
n=1

λn(E) =
∞∑
n=1

∫
E

gn(x) dx =

∫
E

∞∑
n=1

gn(x) dx,

and thus

g̃ =
dλ̃

dm
=
∞∑
n=1

gn ∈ L1([a, b]).

Therefore, λ̃ � m. Also, for any n ∈ N, there exists a set En ⊂ [a, b] with
m(En) = 0 such that ηn([a, b] \ En) = 0 Hence,

η̃([a, b] \
∞⋃
n=1

En) = 0 and m(
∞⋃
n=1

En) = 0,

so η̃ ⊥ m. Since the decomposition of a measure into the absolutely continuous
and the singular part is unique,

λ = λ̃ and η = η̃.

Summarizing, we have

G′ = g =
dλ

dm
=
∞∑
n=1

gn =
∞∑
n=1

G′n a.e.

as claimed.


