Department of Mathematics, University of Michigan Analysis Qualifying Exam, August 17, 2022

Morning Session, 9.00 AM-12.00

Problem 1: Let A be a Lebesgue measurable subset of [0,1] with positive measure. Show there exists $x_1, x_2 \in A$ such that $x_1 - x_2$ is a rational number.

Problem 2: Let $f(\cdot)$ be a locally integrable function on \mathbb{R}^n and Mf the corresponding Hardy-Littlewood maximal function

$$Mf(x) = \sup_{R>0} \frac{1}{|B(x,R)|} \int_{B(x,R)} |f(y)| dy, \quad x \in \mathbb{R}^n,$$

where B(x, R) denotes the ball centered at x with radius R.

- a) Show that if f is integrable on \mathbb{R}^n then $\sup_{\lambda>0}\lambda\ m\{x\in\mathbb{R}^n:|f(x)|>\lambda\}<\infty.$
- b) Let f be the function

$$f(x) = \begin{cases} 1 & \text{if } |x| < 1; \\ 0 & \text{if } |x| \ge 1. \end{cases}$$

Show that Mf is not integrable on \mathbb{R}^n , but $\sup_{\lambda>0} \lambda \ m\{x \in \mathbb{R}^n : Mf(x) > \lambda\} < \infty$.

Problem 3: Let $g:[1,\infty)\to\mathbb{R}$ be a non-negative measurable function.

a) Prove the inequality

$$\left(\int_1^\infty g(t)\ dt\right)^3 \le \int_1^\infty t^4 g(t)^3\ dt\ .$$

b) Assuming the integral on the right hand side of the inequality in a) is finite, find all functions g for which the inequality becomes an equality.

Problem 4: Let $f:[0,1] \to \mathbb{R}$ be a continuous function which is absolutely continuous in any interval $[\varepsilon,1]$ with $0<\varepsilon<1$.

- a) Is $f(\cdot)$ absolutely continuous on the entire interval [0, 1]? Prove this or give a counterexample.
- b) Suppose now that additionally f is of bounded variation on the entire interval [0,1]. In that case is f absolutely continuous on the entire interval [0,1]? Prove this or give a counterexample.

Problem 5: Let f and g be bounded measurable functions on \mathbb{R}^n . Assume that g is integrable and satisfies $\int g = 0$. For k > 0 define the functions g_k and convolution $f * g_k$ by

$$g_k(x) = k^n g(kx), \quad f * g_k(x) = \int_{\mathbb{R}^n} f(x - y) g_k(y) \ dy, \quad x \in \mathbb{R}^n.$$

- a) Prove that if f is also continuous then $\lim_{k\to\infty} f * g_k(x) = 0$ for almost every $x\in\mathbb{R}^n$.
- b) Extend your proof in a) to all bounded measurable functions f. Hint: Use Lusin's theorem.