Department of Mathematics, University of Michigan Analysis Qualifying Exam, August 17, 2022

Morning Session, 9.00 AM-12.00

Problem 1: Let A be a Lebesgue measurable subset of [0,1] with positive measure. Show there exists $x_1, x_2 \in A$ such that $x_1 - x_2$ is a rational number.

Solution: Enumerate the rational numbers in [0,1] as r_n , $n=1,2,\ldots$, and set $A_n=A+r_n$. Then $A_n\subset [0,2]$ and $m(A_n)=m(A)>0$. Since there are an infinite number of rationals, there exists m,n such that $A_n\cap A_m$ is not empty. If $x\in A_n\cap A_m$ then $x=x_1+r_n=x_2+r_m$ where $x_1,x_2\in A$, whence x_1-x_2 is rational.

Problem 2: Let $f(\cdot)$ be a locally integrable function on \mathbb{R}^n and Mf the corresponding Hardy-Littlewood maximal function

$$Mf(x) = \sup_{R>0} \frac{1}{|B(x,R)|} \int_{B(x,R)} |f(y)| dy, \quad x \in \mathbb{R}^n,$$

where B(x, R) denotes the ball centered at x with radius R.

- a) Show that if f is integrable on \mathbb{R}^n then $\sup_{\lambda>0} \lambda \ m\{x \in \mathbb{R}^n : |f(x)| > \lambda\} < \infty$.
- b) Let f be the function

$$f(x) = \begin{cases} 1 & \text{if } |x| < 1; \\ 0 & \text{if } |x| \ge 1. \end{cases}$$

Show that Mf is not integrable on \mathbb{R}^n , but $\sup_{\lambda>0} \lambda \ m\{x \in \mathbb{R}^n : Mf(x) > \lambda\} < \infty$.

Solution: a) This follows from the Chebyshev inequality

$$\lambda \ m\{x \in \mathbb{R}^n : |f(x)| > \lambda\} \le \int_{|f(x)| > \lambda} |f(x)| \ dx \le \int_{\mathbb{R}^n} |f(x)| \ dx .$$

b) First observe that $Mf(\cdot) \leq 1$, whence we can assume $0 < \lambda < 1$. Next there exists a positive integer N such that

$$\frac{1}{2^{(k+N)n}} \le Mf(x) \le \frac{1}{2^{(k-N)n}} \text{ if } 2^k \le |x| \le 2^{k+1}, k = 0, 1, \dots$$

The inequality implies that $Mf \notin L^1(\mathbb{R}^n)$ but $\sup_{\lambda>0} \lambda |\{x \in \mathbb{R}^n : Mf(x) > \lambda\}| < \infty$.

Problem 3: Let $g:[1,\infty)\to\mathbb{R}$ be a non-negative measurable function.

a) Prove the inequality

$$\left(\int_1^\infty g(t) \ dt\right)^3 \le \int_1^\infty t^4 g(t)^3 \ dt \ .$$

b) Assuming the integral on the right hand side of the inequality in a) is finite, find all functions g for which the inequality becomes an equality.

Solution: a) It follows from the Hölder inequality

$$\int fh \leq \left(\int f^{p'}\right)^{1/p'} \left(\int h^p\right)^{1/p}$$

with p = 3, p' = 3/2 that

$$\int_{1}^{\infty} g(t) \ dt = \int_{1}^{\infty} t^{-4/3} [t^{4/3} g(t)] \ dt \le \left(\int_{1}^{\infty} t^{-2} \ dt \right)^{2/3} \left(\int_{1}^{\infty} t^{4} g(t)^{3} \ dt \right)^{1/3} .$$

b) Equality occurs in the Hölder inequality when $h = f^{p'-1} = f^{p'/p}$. This yields $t^{4/3}g(t) = t^{-2/3}$, whence $g(t) = t^{-2}$.

Problem 4: Let $f:[0,1] \to \mathbb{R}$ be a continuous function which is absolutely continuous in any interval $[\varepsilon,1]$ with $0<\varepsilon<1$.

- a) Is $f(\cdot)$ absolutely continuous on the entire interval [0,1]? Prove this or give a counterexample.
- b) Suppose now that additionally f is of bounded variation on the entire interval [0,1]. In that case is f absolutely continuous on the entire interval [0,1]? Prove this or give a counterexample.

Solution: a) No. An example is $f(x) = x \sin(1/x)$. The function $f(\cdot)$ is C^1 on any interval $[\varepsilon, 1]$ but

$$\int_0^1 |f'(x)| \ dx = \int_0^1 |\sin(1/x) - x^{-1}\sin(1/x)| \ dx = \infty \ .$$

b) Yes, since

$$\int_0^1 |f'(x)| \ dx \le TV_{[0,1]}(f) \ .$$

Problem 5: Let f and g be bounded measurable functions on \mathbb{R}^n . Assume that g is integrable and satisfies $\int g = 0$. For k > 0 define the functions g_k and convolution $f * g_k$ by

$$g_k(x) = k^n g(kx), \quad f * g_k(x) = \int_{\mathbb{R}^n} f(x - y) g_k(y) \ dy, \quad x \in \mathbb{R}^n.$$

a) Prove that if f is also continuous then $\lim_{k\to\infty} f * g_k(x) = 0$ for almost every $x \in \mathbb{R}^n$.

b) Extend your proof in a) to all bounded measurable functions f. Hint: Use Lusin's theorem.

Solution: a) Since the integral of g is zero, we have that

$$f * g_k(x) = \int_{\mathbb{R}^n} f(x - z/k)g(z) dz = \int_{\mathbb{R}^n} [f(x - z/k) - f(x)]g(z) dz$$
.

Hence we have that

$$|f * g_k(x)| \le \sup_{|z| < \sqrt{k}} |f(x - z/k) - f(x)| \int_{|z| < \sqrt{k}} |g(z)| dz + 2||f||_{\infty} \int_{|z| > \sqrt{k}} |g(z)| dz.$$

The first term on the RHS converges to 0 as $k \to \infty$ since f is continuous at x and g is integrable. The second term converges to zero since g is integrable.

b) By Lusin's theorem there exists for any $\varepsilon > 0$ a continuous function f_{ε} of compact support such that

$$m(A_{\varepsilon}) = m\{x: |x| < 2R, f(x) \neq f_{\varepsilon}(x)\} < \varepsilon, ||f_{\varepsilon}||_{\infty} \leq ||f||_{\infty}.$$

We write

$$|f*g_k(x)-f_{\varepsilon}*g_k(x)| \le 2||f||_{\infty} \left[\int_{|y|>M} |g(y)| dy + k^n ||g||_{\infty} m\{y : x-y \in A_{\varepsilon}, |y| < M/k\} \right].$$

At this point both ε, M are fixed with ε small and M large. Now we let $k \to \infty$ in the second term on the RHS of the inequality. We have for $\delta > 0$ small and $0 < \gamma < 1$ that

$$m\{x : |x| < R \text{ and } m\{y : x - y \in A_{\varepsilon}, |y| < \delta\} > \gamma \delta^n\} \le \frac{C\varepsilon}{\gamma}$$

for some constant C. This follows from the Chebyshev inequality applied to the convolution function

$$f(x) = \frac{1}{\delta^n} \int \mathbb{1}_A(x-y) \mathbb{1}_{B_\delta}(y) \ dy \ .$$

We apply this to the previous inequality with $\delta = M/k$ and $\gamma = 1/M^{n+1}$. Then outside a set of measure $CM^{n+1}\varepsilon$ the second term on the RHS is bounded by 1/M as $k \to \infty$. Finally first let $\varepsilon \to 0$ and then $M \to \infty$ to get the result.