
Department of Mathematics, University of Michigan
Analysis Qualifying Exam, August 17, 2022

Morning Session, 9.00 AM-12.00

Problem 1: Let A be a Lebesgue measurable subset of [0, 1] with positive mea-
sure. Show there exists x1, x2 ∈ A such that x1 − x2 is a rational number.

Solution: Enumerate the rational numbers in [0, 1] as rn, n = 1, 2, . . . , and set
An = A + rn. Then An ⊂ [0, 2] and m(An) = m(A) > 0. Since there are an
infinite number of rationals, there exists m,n such that An ∩ Am is not empty. If
x ∈ An ∩ Am then x = x1 + rn = x2 + rm where x1, x2 ∈ A, whence x1 − x2 is
rational.

Problem 2: Let f(·) be a locally integrable function on Rn and Mf the corre-
sponding Hardy-Littlewood maximal function

Mf(x) = sup
R>0

1

|B(x,R)|

∫
B(x,R)

|f(y)| dy , x ∈ Rn ,

where B(x,R) denotes the ball centered at x with radius R.
a) Show that if f is integrable on Rn then supλ>0 λ m{x ∈ Rn : |f(x)| > λ} <∞.
b) Let f be the function

f(x) =

{
1 if |x| < 1;
0 if |x| ≥ 1.

Show that Mf is not integrable on Rn, but supλ>0 λ m{x ∈ Rn : Mf(x) > λ} <
∞.

Solution: a) This follows from the Chebyshev inequality

λ m{x ∈ Rn : |f(x)| > λ} ≤
∫
|f(x)|>λ

|f(x)| dx ≤
∫
Rn
|f(x)| dx .

b) First observe that Mf(·) ≤ 1, whence we can assume 0 < λ < 1. Next there
exists a positive integer N such that

1

2(k+N)n
≤ Mf(x) ≤ 1

2(k−N)n
if 2k ≤ |x| ≤ 2k+1 , k = 0, 1, . . .

The inequality implies that Mf /∈ L1(Rn) but supλ>0 λ |{x ∈ Rn : Mf(x) > λ}| <
∞.



Problem 3: Let g : [1,∞)→ R be a non-negative measurable function.
a) Prove the inequality(∫ ∞

1

g(t) dt

)3

≤
∫ ∞
1

t4g(t)3 dt .

b) Assuming the integral on the right hand side of the inequality in a) is finite,
find all functions g for which the inequality becomes an equality.

Solution: a) It follows from the Hölder inequality∫
fh ≤

(∫
fp

′
)1/p′ (∫

hp
)1/p

with p = 3, p′ = 3/2 that∫ ∞
1

g(t) dt =

∫ ∞
1

t−4/3[t4/3g(t)] dt ≤
(∫ ∞

1

t−2 dt

)2/3(∫ ∞
1

t4g(t)3 dt

)1/3

.

b) Equality occurs in the Hölder inequality when h = fp
′−1 = fp

′/p. This yields
t4/3g(t) = t−2/3, whence g(t) = t−2.

Problem 4: Let f : [0, 1] → R be a continuous function which is absolutely
continuous in any interval [ε, 1] with 0 < ε < 1.
a) Is f(·) absolutely continuous on the entire interval [0, 1]? Prove this or give a
counterexample.
b) Suppose now that additionally f is of bounded variation on the entire interval
[0, 1]. In that case is f absolutely continuous on the entire interval [0, 1]? Prove
this or give a counterexample.

Solution: a) No. An example is f(x) = x sin(1/x). The function f(·) is C1 on
any interval [ε, 1] but∫ 1

0

|f ′(x)| dx =

∫ 1

0

| sin(1/x)− x−1 sin(1/x)| dx = ∞ .

b) Yes, since ∫ 1

0

|f ′(x)| dx ≤ TV[0,1](f) .

Problem 5: Let f and g be bounded measurable functions on Rn. Assume that
g is integrable and satisfies

∫
g = 0. For k > 0 define the functions gk and

convolution f ∗ gk by

gk(x) = kng(kx), f ∗ gk(x) =

∫
Rn
f(x− y)gk(y) dy , x ∈ Rn .

a) Prove that if f is also continuous then limk→∞ f ∗ gk(x) = 0 for almost every
x ∈ Rn.



b) Extend your proof in a) to all bounded measurable functions f . Hint: Use
Lusin’s theorem.

Solution: a) Since the integral of g is zero, we have that

f ∗ gk(x) =

∫
Rn
f(x− z/k)g(z) dz =

∫
Rn

[f(x− z/k)− f(x)]g(z) dz .

Hence we have that

|f ∗ gk(x)| ≤ sup
|z|<
√
k

|f(x− z/k)− f(x)|
∫
|z|<
√
k

|g(z)| dz+ 2‖f‖∞
∫
|z|>
√
k

|g(z)| dz .

The first term on the RHS converges to 0 as k → ∞ since f is continuous at x
and g is integrable. The second term converges to zero since g is integrable.
b) By Lusin’s theorem there exists for any ε > 0 a continuous function fε of
compact support such that

m(Aε) = m{x : |x| < 2R, f(x) 6= fε(x)} < ε , ‖fε‖∞ ≤ ‖f‖∞ .

We write

|f∗gk(x)−fε∗gk(x)| ≤ 2‖f‖∞
[∫
|y|>M

|g(y)| dy + kn‖g‖∞m{y : x− y ∈ Aε, |y| < M/k}
]
.

At this point both ε,M are fixed with ε small and M large. Now we let k → ∞
in the second term on the RHS of the inequality. We have for δ > 0 small and
0 < γ < 1 that

m{x : |x| < R and m{y : x− y ∈ Aε, |y| < δ} > γδn} ≤ Cε

γ
,

for some constant C. This follows from the Chebyshev inequality applied to the
convolution function

f(x) =
1

δn

∫
1A(x− y)1Bδ(y) dy .

We apply this to the previous inequality with δ = M/k and γ = 1/Mn+1. Then
outside a set of measure CMn+1ε the second term on the RHS is bounded by 1/M
as k →∞. Finally first let ε→ 0 and then M →∞ to get the result.


