Department of Mathematics, University of Michigan
Analysis Qualifying Exam, August 17, 2022
Morning Session, 9.00 AM-12.00

Problem 1: Let A be a Lebesgue measurable subset of [0, 1] with positive mea-
sure. Show there exists x1, o € A such that z; — x5 is a rational number.

Solution: Enumerate the rational numbers in [0,1] as r,, n = 1,2,..., and set
A, = A+, Then A, C [0,2] and m(A4,) = m(A) > 0. Since there are an
infinite number of rationals, there exists m,n such that A, N A,, is not empty. If
xr € A,NA, then x = 21 +r, = 9 + 1, Where x1,25 € A, whence x; — 5 is
rational.

Problem 2: Let f(:) be a locally integrable function on R™ and M f the corre-
sponding Hardy-Littlewood maximal function

1
Mf(x) = sup—/
( ) R>0 |B(I7R)| B(ac,R)|

where B(z, R) denotes the ball centered at x with radius R.
a) Show that if f is integrable on R" then supy.o A m{z € R" : |f(x)] > A} < 0.

b) Let f be the function
(1 it <1
fx) = {o if |2 > 1.

Show that M f is not integrable on R™, but supy.o A m{z € R* : M f(z) > \} <
0.

fy)ldy, zeR",

Solution: a) This follows from the Chebyshev inequality

Am{z e R": |f(z)] > A} < /|f( o

b) First observe that M f(-) < 1, whence we can assume 0 < A < 1. Next there
exists a positive integer N such that

1 1
2(k+N)n = Mf(x) = 2(k—N)n if 2 < |[)3| < 2k k=0,1,...

|f(z)| dv < s |f(x)] da .

The inequality implies that M f ¢ L'(R™) but sup,.o A [{z € R": M f(z) > \}| <
.



Problem 3: Let g : [1,00) — R be a non-negative measurable function.
a) Prove the inequality

(/100 q(t) dt)3 < /100 ttg(t)® dt .

b) Assuming the integral on the right hand side of the inequality in a) is finite,
find all functions g for which the inequality becomes an equality.

Solution: a) It follows from the Hélder inequality

fn=(f)" (I

with p = 3,p’ = 3/2 that

/Ioog(t) dt = /loot4/3[t4/3g(t)] dt < (/lth dt)m (/loot4g(t)3 dt>1/3 |

b) Equality occurs in the Holder inequality when h = fP~1 = /P, This yields
t43g(t) = t~%/3, whence g(t) = t 2.

Problem 4: Let f : [0,1] — R be a continuous function which is absolutely
continuous in any interval [e, 1] with 0 < e < 1.

a) Is f(-) absolutely continuous on the entire interval [0, 1]? Prove this or give a
counterexample.

b) Suppose now that additionally f is of bounded variation on the entire interval
[0,1]. In that case is f absolutely continuous on the entire interval [0, 1]? Prove
this or give a counterexample.

Solution: a) No. An example is f(x) = zsin(1/x). The function f(-) is C* on
any interval [e, 1] but

1 1
/ (@) do = / (sin(1/2) — o sin(1/2)] dz = oo .
0 0
b) Yes, since

/0 F@)] de < TViu(f) .

Problem 5: Let f and g be bounded measurable functions on R™. Assume that
g is integrable and satisfies [¢g = 0. For k > 0 define the functions gy and
convolution f * g by

gr(x) = K"g(kz), [ *gi(z) = Rnf(ﬂf —Yor(y) dy, x€R™.

a) Prove that if f is also continuous then limy o, f * gr(z) = 0 for almost every
x € R™



b) Extend your proof in a) to all bounded measurable functions f. Hint: Use
Lusin’s theorem.

Solution: a) Since the integral of g is zero, we have that

Froe) = [ fe=se) s = [ =2/ - f@lale) ds
Hence we have that

[f*gr(x)] < sup [f(z—2/k)— f(x) |9(2)] d2+2||f||oo/ l9(2)] dz .
l2|<Vk l2|<Vk Ev

The first term on the RHS converges to 0 as k — oo since f is continuous at x

and g is integrable. The second term converges to zero since g is integrable.

b) By Lusin’s theorem there exists for any € > 0 a continuous function f. of

compact support such that

m(Ae) = miz: [z] <2R, f(z) # fo(2)} < &, |fello < ISl

We write

(@)~ forge(@)] < 20f U 19(9)| dy + K llglloom{y : @ — v € Ao, |yl < MK} .

y|>M
At this point both e, M are fixed with € small and M large. Now we let k& — oo
in the second term on the RHS of the inequality. We have for § > 0 small and
0 <~v <1 that

C
m{z:|z| < Rand m{y:z —y € A,, ly| <} >~0"} < 787

for some constant C'. This follows from the Chebyshev inequality applied to the
convolution function

fl@) = 5 [ 1ale—)in o) dy

We apply this to the previous inequality with 6 = M/k and v = 1/M™"!. Then
outside a set of measure CM"*1e the second term on the RHS is bounded by 1/M
as k — oco. Finally first let ¢ — 0 and then M — oo to get the result.



