Real Analysis Qualifying Review

May 13, 2021

Notation: $m^*(E)$ is the Lebesgue outer measure of E, m(E) is the Lebesgue measure of E.

1. Let $A_1 \subset A_2 \subset \mathbb{R}^n$. Assume that A_1 is Lebesgue measurable and $m(A_1) = m^*(A_2) < \infty$. Show that A_2 is also Lebesgue measurable.

2. Let f be a measurable function on $E \subset \mathbb{R}$. Assume that

$$\int_{E} |x|^{1/4} |f(x)|^2 \, dx < \infty, \qquad \int_{E} x^4 |f(x)|^3 \, dx < \infty.$$

Is $f \in L^1(E)$? Justify your assertion.

3. (a) Construct a function $f : \mathbb{R} \to \mathbb{R}$ such that $f \in L^p(\mathbb{R})$ for all $0 , but <math>f \notin L^{\infty}(\mathbb{R})$.

(b) Let (X, \mathcal{A}, μ) be a measure space such that for any t > 0 there exists a set $E_t \in \mathcal{A}$, with $\mu(E_t) = t$. Construct a function $f: X \to \mathbb{R}$ such that $f \in L^p(\mu)$ for all $0 , but <math>f \notin L^{\infty}(\mu)$.

4. Let f, g be nonnegative measurable functions on $E \subset \mathbb{R}^n$, and assume $fg \in L^1(E)$. Let $E_y = \{x \in E \mid g(x) \ge y\}$. Show that

a) for every y > 0,

$$F(y) := \int_{E_y} f(x) \, dx < \infty.$$

b) Is $F \in L^1(0, +\infty)$? Justify your answer.

5. Let f be a function defined on \mathbb{R}^n . Assume that for any $\epsilon > 0$, there are $g, h \in L^1(\mathbb{R}^n)$, satisfying

$$g(x) \le f(x) \le h(x), \qquad a.e. \ x \in \mathbb{R}^n,$$

and

.

$$\int_{\mathbb{R}^n} \left(h(x) - g(x) \right) dx < \epsilon.$$

Show that $f \in L^1(\mathbb{R}^n)$.