Complex Analysis Qualifying Review

May 14, 2021

The terms "holomorphic" and "analytic" are synomymous. The complex plane is denoted \mathbb{C} , and $\mathbb{D}:=\{z\in\mathbb{C}\mid |z|<1\}$ is the unit disc.

- 1. Let $g_n(z)$, n = 1, 2, ... be a sequence of entire functions having only real zeros. Suppose that $g_n(z)$ converges locally uniformly (i.e. uniformly on compact subsets) on \mathbb{C} to an entire function g(z), and that g(z) is not identically zero. Prove that g(z) only have real zeros.
- **2.** For which integers $k \geq 1$ does there exist a holomorphic function f(z) defined near the origin, such that $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^k}$ for infinitely many integers $n \geq 1$.
- **3.** Construct a conformal mapping f of the domain

$$\Omega=\{z\in\mathbb{C}\mid |z|<1, |z-\tfrac{i}{2}|>\tfrac{1}{2}\}$$

onto the unit disc $\mathbb{D} = \{w \in \mathbb{C} \mid |w| < 1\}$ with $f(-\frac{i}{3}) = 0$. You may express f as a composition of simpler maps. Draw figures to illustrate each step of the construction.

- **4.** Let $\varphi(z)$ be a holomorphic function on the unit disc \mathbb{D} , and set $f(z) = z + z^2 \varphi(z)$. Assume that one of the following conditions holds:
 - (a) $f(\mathbb{D}) \subset \mathbb{D}$;
 - (b) f is one-to-one on \mathbb{D} and $f(\mathbb{D}) \supset \mathbb{D}$.

Prove that $\varphi(z) = 0$ for all $z \in \mathbb{D}$.

5. Let f(z) be an entire function. Assume that f takes real values on the real axis, and purely imaginary values on the line $\operatorname{Re} z = \operatorname{Im} z$ (i.e. y = x, where z = x + iy). Prove that f takes real values on the imaginary axis. Also give an example of a function satisfying the hypotheses.