
Department of Mathematics, University of Michigan
Real Analysis Qualifying Exam, August 20, 2021

Solutions

Problem 1: Let f ∈ L1((0,∞)× R). Define the sequence gn : (0,∞)→ R by

gn(x) =

∫ ∞
0

e−λf(nλ, x) dλ, n ∈ N.

(1) Show that limn→∞ ‖gn‖1 = 0.
(2) Show that gn → 0 a.e.

Solution: Using the change of variables formula, we get

gn(x) =
1

n

∫ ∞
0

e−t/nf(t, x) dt.

(1) Since f ∈ L1((0,∞)× R), Tonelli-Fubini Theorem yields

‖gn‖1 ≤
1

n

∫
R

∫ ∞
0

e−t/n|f(t, x)| dt dx ≤ 1

n
‖f‖L1((0,∞)×R) → 0.

(2) For k ∈ N, denote

Ek = {x ∈ R :

∫ ∞
0

|f(t, x)| dt ≤ k}.

By the Tonelli-Fubini Theorem, Ek is measurable, and the calculation
above shows that for any x ∈ Ek, |gn(x)| ≤ k

n
→ 0. Hence, gn(x)→ 0 for

all x ∈
⋃
k∈NEk, and

m

(
R \

⋃
k∈N

Ek

)
= 0

again by the Tonelli-Fubini Theorem.

Problem 2: Let (X,A, µ) be a measure space, and let f ∈ L1(µ).
Prove that limn→∞

∫
X
|f |1/n dµ exists and find it (the limit can be +∞).

Solution: Denote A = {x ∈ X : |f(x)| > 0} and B = {x ∈ X : |f(x)| ≥ 1}.
For any x ∈ X, |f(x)|1/n → 1A(x). For any x ∈ B , and any n ∈ N, |f(x)|1/n ≤
|f(x)|, and f ∈ L1(µ). Hence the Lebesgue Dominated Convergence Theorem
yields

lim
n→∞

∫
B

|f |1/n dµ =

∫
B

1A dµ = µ(B).



On the other hand, for any x ∈ Bc, the sequence |f(x)|1/n is increasing. By the
Monotone Convergence Theorem,

lim
n→∞

∫
Bc

|f |1/n dµ =

∫
Bc

1A dµ = µ(Bc ∩ A).

Finally,

lim
n→∞

∫
X

|f |1/n dµ = µ(B) + µ(Bc ∩ A) = µ(A).

Problem 3: Let K = {f : [0,∞]→ [0,∞) :
∫∞
0
f 4 dx ≤ 1}. Evaluate

sup
f∈K

∫ ∞
0

f 3(x)e−x dx.

Solution: By Hölder’s inequality applied with p = 4
3
, for any f ∈ K,∫ ∞

0

f 3(x)e−x dx ≤
(∫

f 4(x) dx

)3/4

·
(∫ ∞

0

(e−x)4 dx

)1/4

≤
(

1

4

)1/4

.

To show that the supremum is attained, take a function f for which Hölder’s
inequality becomes an equality, i.e.,

f(x) =
√

2e−x.

Then f ∈ K and ∫ ∞
0

f 3(x)e−x dx =

(
1

4

)1/4

.

Problem 4: Let
{
fn : [0, 1]→ {−1, 1}

}∞
n=1

be a sequence of measurable functions
defined by

fn(x) =


1 if x ∈ ( 2k

2n
, 2k+1

2n
], k = 0, 1, . . . , 2n−1 − 1;

−1 if x ∈ (2k+1
2n

, 2k+2
2n

], k = 0, 1, . . . , 2n−1 − 1.

Prove that ∫ 1

0

fng dx→ 0

for any g ∈ L1([0, 1]).

Solution: Let X ⊂ L1([0, 1]) be any subset dense in L1([0, 1]). It is enough

to check that for any h ∈ X,
∫ 1

0
fnh dx → 0. Indeed, assume that this condition



is satisfied, and let g ∈ L1([0, 1]). Take any ε > 0 and let h ∈ X be such that
‖g − h‖1 < ε. Then

lim sup

∣∣∣∣∫ 1

0

fng dx

∣∣∣∣ ≤ lim sup

∣∣∣∣∫ 1

0

fnh dx

∣∣∣∣+ lim sup

∣∣∣∣∫ 1

0

fn(g − h) dx

∣∣∣∣ ≤ ‖g − h‖1
< ε,

so
∫ 1

0
fng dx→ 0.

The set X can be chosen in many different ways. We show two of them below.

(1) X = span{1[a,b], 0 ≤ a < b ≤ 1}. It is enough to check the condition for
h = 1[a,b]. In this case∫ 1

0

fnh dx =

∫ b

a

fn dx→ 0

as required.
(2) X = C([0, 1]). Take any h ∈ X. For any ε > 0, there exists δ > 0 such

that

∀x, y ∈ [0, 1] |x− y| < δ ⇒ |h(x)− h(y)| < ε.

Assume that 2−n+1 < δ. Then for any k = 0, 1, . . . , 2n−1 − 1,∣∣∣∣∣
∫ 2k+2

2n

2k
2n

fn(x)h(x) dx

∣∣∣∣∣ < ε

2n−1
,

and so ∣∣∣∣∫ 1

0

fn(x)h(x) dx

∣∣∣∣ < ε.

Problem 5: Let A ⊂ [0, 1] be a set such that m(A) ≥ 0.999 (m stands for the
Lebesgue measure). Prove that there exists a point x ∈ (0, 1) such that

m(A ∩ (x− r, x+ r)) ≥ r for any r ∈ (0, 1/4).

Hint: use the Hardy-Littlewood Maximal Theorem. Recall that for n = 1, it holds
with constant C ≤ 4.

Solution: Denote by Mf the maximal function of the function f :

Mf(x) = sup
r>0

1

2r

∫ x+r

x−r
|f(x)| dx.

Let

E =

{
x ∈ R : M1[0,1]\A(x) >

1

2

}
.



By the Hardy-Littlewood Maximal Theorem,

m(E) ≤ 4 ·
∥∥1[0,1]\A

∥∥
1

1/2
≤ 0.008.

Hence, there is a point x ∈ (1
4
, 3
4
) such that x /∈ E. Since (x − 1

4
, x + 1

4
) ⊂ (0, 1),

this means that for any r ∈ (0, 1/4),

m(A∩(x−r, x+r)) ≥ 2r−m((x−r, x+r)∩([0, 1]\A)) ≥ 2r−2rM1[0,1]\A(x) ≥ r.


