Department of Mathematics, University of Michigan Real Analysis Qualifying Exam, August 20, 2021

Morning Session, 9.00 AM-12.00 AM

Problem 1: Let $f \in L_1((0,\infty) \times \mathbb{R})$. Define the sequence $g_n : (0,\infty) \to \mathbb{R}$ by

$$g_n(x) = \int_0^\infty e^{-\lambda} f(n\lambda, x) d\lambda, \quad n \in \mathbb{N}.$$

- (1) Show that $\lim_{n\to\infty} ||g_n||_1 = 0$.
- (2) Show that $g_n \to 0$ a.e.

Problem 2: Let (X, \mathcal{A}, μ) be a measure space, and let $f \in L_1(\mu)$. Prove that $\lim_{n\to\infty} \int_X |f|^{1/n} d\mu$ exists and find it (the limit can be $+\infty$).

Problem 3: Let $K = \{f : [0, \infty] \to [0, \infty) : \int_0^\infty f^4 dx \le 1\}$. Evaluate

$$\sup_{f \in K} \int_0^\infty f^3(x) e^{-x} \, dx.$$

Problem 4: Let $\{f_n: [0,1] \to \{-1,1\}\}_{n=1}^{\infty}$ be a sequence of measurable functions defined by

$$f_n(x) = \begin{cases} 1 & \text{if } x \in \left(\frac{2k}{2^n}, \frac{2k+1}{2^n}\right], \quad k = 0, 1, \dots, 2^{n-1} - 1; \\ -1 & \text{if } x \in \left(\frac{2k+1}{2^n}, \frac{2k+2}{2^n}\right], \quad k = 0, 1, \dots, 2^{n-1} - 1. \end{cases}$$

Prove that

$$\int_0^1 f_n g \, dx \to 0$$

for any $g \in L_1([0,1])$.

Problem 5: Let $A \subset [0,1]$ be a set such that $m(A) \geq 0.999$ (m stands for the Lebesgue measure). Prove that there exists a point $x \in (0,1)$ such that

$$m(A \cap (x - r, x + r)) \ge r$$
 for any $r \in (0, 1/4)$.

Hint: use the Hardy-Littlewood Maximal Theorem. Recall that for n=1, it holds with constant $C\leq 4$.