Department of Mathematics, University of Michigan Complex Analysis Qualifying Exam, August 19, 2021

Morning Session, 9.00 AM-12.00

Problem 1: Let $\mathbb{D} = \{|z| < 1\}$ be the unit disk in \mathbb{C} and $f : \mathbb{D} \to \mathbb{C}$ an analytic function, which extends to a continuous function on the closure $\overline{\mathbb{D}}$ of \mathbb{D} .

- (a) Show that for any $z_0 \in \mathbb{D}$ there is a constant C, independent of $f(\cdot)$, such that the derivative $f'(\cdot)$ satisfies $|f'(z_0)| \leq C \sup_{|z|=1} |f(z)|$.
- (b) Give an example to show that C may not be chosen independent of $z_0 \in \mathbb{D}$.

Problem 2: Use contour integration to find the value of the integral

$$\int_0^\infty \frac{dx}{1+x^{2021}}.$$

Problem 3: Let z_n , n = 1, 2, ..., be a sequence in \mathbb{C} such that $\lim_{n \to \infty} |z_n| = \infty$ and a_n , n = 1, 2, ..., a sequence in $\mathbb{C} - \{0\}$ satisfying

$$\sum_{n=1}^{\infty} \frac{|a_n|}{|z_n|} < \infty .$$

(a) Show that the function $f(\cdot)$ defined by

$$f(z) = \sum_{n=1}^{\infty} \frac{a_n}{z - z_n}, \quad z \in \mathbb{C},$$

is a meromorphic function $f: \mathbb{C} \to \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ with simple poles at the points $z_n, n = 1, 2, \ldots$

(b) Does $f(\cdot)$ extend to a meromorphic function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$? Explain your answer.

Problem 4: Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that f(1) = 1 and |f(z)| = 1 if |z| = 1.

(a) Show that

$$\overline{f(z)}f\left(\frac{1}{\overline{z}}\right) = 1 \text{ for } z \in \mathbb{C}.$$

(b) Conclude that $f(z) = z^n$ for some integer $n \ge 0$.

Problem 5:

- (a) Show that \mathbb{D} is not conformally equivalent to \mathbb{C} .
- (b) Find an analytic mapping $f: \mathbb{D} \to \mathbb{C}$ such that $f(\mathbb{D}) = \mathbb{C}$.