Complex Analysis Qualifying Review

August 17, 2020

1. Let $\alpha > 0$ be a real number.

- (a) Prove that if α ≤ 1, then there exists an analytic function f on the unit disc such that f(1/n) = 1/(n+α) for all integers n ≥ 1.
 (b) Prove that if α > 1 and f is an analytic function on the unit disc, then there exist only finitely many integers n ≥ 1 such that f(1/n) = 1/(n+α).

2. Does there exist an entire function f (i.e. f is analytic in the whole complex plane) such that the inequality

$$\frac{1}{2}|z|^{3/2} - |z| \le |f(z)| \le 2|z|^{3/2} + \frac{7}{2}|z|$$

holds for all z outside a compact set? Justify your answer.

3. Find all analytic functions f on the unit disc \mathbb{D} such that f(0) = 1, $f(\frac{1}{2}) = 3$, and $\operatorname{Re} f(z) > 0$ for all $z \in \mathbb{D}$.

4. Use complex integration to compute the real integral $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$.

5. Let *D* be the (open) square with corners at $\pm 1 \pm i$. Find the number of solutions to the equation $e^z = 3z^{2020}$ in *D*, counted with multiplicity.