Department of Mathematics, University of Michigan Analysis Qualifying Exam, May 9, 2019

Morning Session, 9.00 AM-12.00

Note: $\mathbb{D} = \{z \in \mathbb{C} \colon |z| < 1\}$

Problem 1: Let $-1 < \alpha < 1$. Use residue calculus to compute

$$\int_{0}^{+\infty} \frac{x^{\alpha}}{1+x^{2}} dx.$$

Problem 2: Let Ω be a bounded open subset of \mathbb{C} and let z_1, z_2 be distinct points in Ω . Prove or disprove:

there must be an analytic $f: \Omega \to \mathbb{D}$ satisfying

$$|f(z_1) - f(z_2)| = \sup \{ |g(z_1) - g(z_2)| \mid g \colon \Omega \to \mathbb{D} \text{ analytic} \}.$$

Problem 3: Let f(z) = f(x+iy) be a complex-valued function with continuous first partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ in some domain $\Omega \subset \mathbb{C}$. Suppose that for all $\lambda \in \mathbb{C}$ the mapping $f_{\lambda}(z) \stackrel{\text{def}}{=} f(z) - \lambda z$ has a nonnegative Jacobian determinant (when viewed as an \mathbb{R}^2 -valued function of two real variables). Prove that f is analytic on Ω .

Problem 4: Construct a function f analytic on a neighborhood of the closed unit disk $\overline{\mathbb{D}}$ and satisfying

$$\int_{|z|=1} \frac{f'(z)}{f(z)} dz = 4\pi i$$

$$\int_{|z|=1} \frac{zf'(z)}{f(z)} dz = 0$$

$$\int_{|z|=1} \frac{z^2 f'(z)}{f(z)} dz = 5\pi i,$$

or else explain why no such function exists.

Problem 5: Let $\Omega \subset \mathbb{C}$ be a simply connected domain with $\Omega \neq \mathbb{C}$ and let $f \colon \Omega \to \Omega$ be an analytic mapping. Suppose there exist points $z_1, z_2 \in \Omega$ such that $f(z_1) = z_1$ and $f(z_2) = z_2$. Show that f(z) = z for all $z \in \Omega$.

Department of Mathematics, University of Michigan Analysis Qualifying Exam, May 9, 2019

Afternoon Session, 2.00-5.00 PM

Problem 1: Let $A \in [0,1]$ be a Lebesgue-measurable set with positive Lebesgue measure. Prove that there are two points $x, y \in A$ such that $x \neq y$ and x - y is rational.

Hint: Consider A + r.

Problem 2: Let $f:(1,\infty)\to\mathbb{R}$ be a Lebesgue-integrable function and define $g:[0,\infty)\to\mathbb{R}$ by

 $g(y) = \int_{1}^{\infty} f(x)e^{-xy} dx$, y > 0.

- (a) Prove that g is a continuous function which satisfies $\lim_{y\to\infty} g(y) = 0$.
- (b) Show that if f is in $L^2(1,\infty)$ then g is Lebesgue-integrable on $(0,\infty)$.

Problem 3: Consider numbers in the interval [0,1] to base 8, and let E be the subset of those numbers whose decimal expansion contains the digit 5.

- (a) Show that E is Lebesgue-measurable and find the Lebesgue measure of E.
- (b) Define $\tau: E \to \mathbb{Z}$ by $\tau(x)$ is the first digit in the octal (base 8) expansion of x which equals 5, and define $f: E \to \mathbb{R}$ by $f(x) = 3^{\tau(x)}$. Find the values of p > 0 such that $f \in L^p(E)$.

Problem 4: Let $f:[0,1]\to\mathbb{R}$ be a positive function of bounded variation.

- (a) Show that if $\inf f(\cdot) > 0$ then the function g(x) = 1/f(x) is also of bounded variation on [0, 1].
- (b) Give an example of a positive function $f:[0,1]\to\mathbb{R}$ of bounded variation such that $g(\cdot)=1/f(\cdot)$ is integrable but not of bounded variation.

Problem 5: Let (X, μ) be a measure space such that $\mu(X) < \infty$. Show that

$$\lim_{n \to \infty} \int_X \frac{|f_n - f|}{1 + |f_n - f|} d\mu = 0$$

if and only if $f_n \to f$ in measure as $n \to \infty$.