Analysis Qualifying Review. May 4, 2017

Morning Session, 9:00 am - 12:00 pm

1. Let $(f_j)_{j=1}^{\infty}$ be a sequence of measurable functions on a measure space (X, \mathcal{M}, μ) . Suppose that the series

$$\sum_{j=1}^{\infty} \mu\{x \in X \mid |f_j(x)| \ge \epsilon\}$$

converges for every $\epsilon > 0$. Prove that $f_j(x) \to 0$ almost everywhere on X.

- 2. Let $E \subset [0,1]$ be the middle-third Cantor set, i.e. $E = [0,1] \setminus \bigcup_{n=1}^{\infty} U_n$, where $U_1 = (1/3,2/3)$, $U_2 = (1/9,2/9) \cup (7/9,8/9)$ etc. Find a function $f \in C^{\infty}(\mathbb{R})$ such that $f \geq 0$ and $\{x \in \mathbb{R} \mid f(x) = 0\} = E$.
- 3. Let $\alpha < 1$. Prove the existence of the limit

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n}\right)^n x^{1/n} e^{\alpha x} \, dx,$$

and calculate it

- 4. Let $\beta > 1$ and C > 0. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $|f(x) f(y)| \le C|x y|^{\beta}$ for all $x, y \in \mathbb{R}$.
- 5. Construct a function $f \in L^1(\mathbb{R}^n)$ such that $f \notin L^p(U)$ for any open subset $U \subset \mathbb{R}^n$ and any p > 1.

Analysis Qualifying Review. May 4, 2017

Afternoon Session, 2:00 pm - 5:00 pm

- 1. Let f(z) be an entire function such that $f(0) = 1 + \pi i$ and $\operatorname{Re} f(z) \ge 1$ when |z| < 1. Compute f'(0).
- 2. Let $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disc and $a \in \mathbb{D} \setminus \{0\}$ a point. Find all analytic functions f(z) on \mathbb{D} such that
 - |f(z)| < 1 for all $z \in \mathbb{D}$;
 - f(a) = 0 and f(0) = a.
- 3. Use residues to compute the integral $\int_0^\infty \frac{\sin tx}{x} dx$ for any $t \in \mathbb{R}$. Show all your steps.
- 4. Prove that for any real number a > 1, the equation $ze^{a-z} = 1$ has exactly one solution in the unit disc, and that this solution is real and positive.
- 5. Let f(z) be a complex-valued C^{∞} function defined on a connected open subset Ω of the complex plane. Assume that f(z) and $f^2(z)$ are both harmonic (i.e. the real and imaginary parts of these functions are harmonic). Prove that either f(z) or $\overline{f(z)}$ is analytic in Ω .