
Analysis Qualifying Review. May 4, 2017

Morning Session, 9:00 am - 12:00 pm

1. Let (fj)
∞
j=1 be a sequence of measurable functions on a measure space (X,M, µ).

Suppose that the series
∞∑
j=1

µ{x ∈ X | |fj(x)| ≥ ε}

converges for every ε > 0. Prove that fj(x)→ 0 almost everywhere on X.

Solution Set Ej,ε = {|fj| ≥ ε} and Aε =
⋂∞
n=1

⋃∞
j=nEj,ε. Then Aε is measurable and

lim supj |fj| ≤ ε on Acε. Further,

µ(Aε) = lim
n→∞

µ(
∞⋃
j=n

Ej,ε) ≤ lim
n→∞

∞∑
j=n

µ(Ej,ε) = 0.

Set A =
⋃∞
k=1A1/k. Then µ(A) ≤

∑
k µ(Ak) = 0 and limj→∞ fj(x) = 0 for x ∈ Ac.

2. Let E ⊂ [0, 1] be the middle-third Cantor set, i.e. E = [0, 1] \
⋃∞
n=1 Un, where U1 =

(1/3, 2/3), U2 = (1/9, 2/9) ∪ (7/9, 8/9) etc. Find a function f ∈ C∞(R) such that
f ≥ 0 and {x ∈ R | f(x) = 0} = E.

Solution: Let g(x) be the distance from a point x ∈ R to E. Then g is nonnegative
with {g = 0} = E. Further, g is continuous on R and C∞ on R \E. Now consider the
function χ : R→ R defined by

χ(t) =

{
0 if t ≤ 0

e−1/t if t > 0

Then f = χ ◦ g has the required properties.

3. Let α < 1. Prove the existence of the limit

lim
n→∞

∫ n

0

(
1− x

n

)n
x1/neαx dx,

and calculate it.

Solution: Consider the function fn on (0,∞) defined by

fn(x) =
(

1− x

n

)n
x1/neαx · χ(0,n)
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We have limn→∞ fn(x) = e−x · 1 · eαx = e−(1−α)x pointwise on R. To estimate fn from
above, first note that x1/n ≤ n1/n ≤ ee

−1
for x ∈ (0, n), where the last inequality follows

by checking that the maximum of the function y1/y on (0,∞) occurs at y = e. Second,
we have

log(1− x

n
) ≤ −x

n

for 0 < x < n. Hence

(1− x

n
)neαx = exp(n log(1− x

n
) + αx) ≤ e−(1−α)x

for 0 ≤ x < n, so that
0 ≤ fn(x) ≤ Ce−(1−α)x

for all x ∈ R, where C = ee
−1

. Since
∫∞
0
e−(1−α)xdx < ∞, the dominated convergence

theorem yields

lim
n→∞

∫ ∞
0

fn(x)dx =

∫ ∞
0

lim
n→∞

fn(x)dx =

∫ ∞
0

e−(1−α)xdx =
1

1− α
.

4. Let β > 1 and C > 0. Find all functions f : R→ R such that |f(x)−f(y)| ≤ C|x−y|β
for all x, y ∈ R.

Solution: For any x, letting y → x we see that f is differentiable at x, with derivative
0. Thus f ′ ≡ 0, so that f is constant. Conversely, any constant function f clearly
satisfies the condition.

5. Construct a function f ∈ L1(Rn) such that f 6∈ Lp(U) for any open subset U ⊂ Rn

and any p > 1.

Solution: Pick a dense sequence (xk)
∞
k=1 in Rn. For each k, define a function fk on

Rn by

fk(x) =

{
|x|−

nk
k+1 if |x| < 1

0 otherwise.

Using polar coordinates we see that∫
Rn

fk(x)dx = c′n

∫ 1

0

rn−1−
nk
k+1dr = cn(k + 1),

where the constants c′n and cn only depend on the dimension n. A similar computation
also shows that fpk is not locally integrable at the origin for p ≥ 1 + 1

k
. Now set

f(x) =
∞∑
k=1

2−kfk(x− xk).
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Then ∫
Rn

f(x)dx = cn

∞∑
k=1

(k + 1)2−k <∞.

On the other hand, if p > 1 and U ⊂ Rn is open, then xk ∈ U for infinitely many k, so
there exists k with xk ∈ U and p ≥ 1 + 1

k
. It then follows that f 6∈ Lp(U).
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Analysis Qualifying Review. May 4, 2017

Afternoon Session, 2:00 pm - 5:00 pm

1. Let f(z) be an entire function such that f(0) = 1 + πi and Re f(z) ≥ 1 when |z| < 1.
Compute f ′(0).

Solution: The origin is a local maximum of e−f . It follows from the maximum modulus
principle that e−f , and hence also f is constant, so f ′(0) = 0.

2. Let D = {z ∈ C | |z| < 1} be the unit disc and a ∈ D \ {0} a point. Find all analytic
functions f(z) on D such that

• |f(z)| < 1 for all z ∈ D;

• f(a) = 0 and f(0) = a.

Solution: Recall the Schwarz Lemma: if g : D → D is analytic and g(0) = 0, then
|g(z)| ≤ |z| for all z ∈ D. Further, if |g(a)| = |a| for some a 6= 0, then g(z) = λz, where
|λ| = 1.

Set g(z) = f( a−z
1+āz

). Then g : D→ D is analytic, g(0) = 0, and g(a) = a. The Schwartz

Lemma gives g(z) = λz. Here λ = 1 since g(a) = a. Thus g(z) = z, i.e. f(z) = a−z
1−āz .

3. Use residues to compute the integral
∫∞

0
sintx
x
dx for any t ∈ R. Show all your steps.

Solution: Set J(t) =
∫∞

0
sintx
x
dx. Clearly J(0) = 0 and J(−t) = −J(t), so we

may assume t > 0. In this case, the change of variables x → tx shows that the
integral is independent of t, so we may assume t = 1. Now compute the integral
I =

∫
γ
eiz

z
dz, where γ consists of the following parts: γ1 := {|z| = ε, Imz ≥ 0};

γ2 := [ε, R], γ3 := [R,R + iR]; γ4 := [R + iR,R − iR]; and γ5 := [R − iR, ε]. The
integral I is zero since the integrand has no poles inside γ. The integral over γ1 tends
to −πi as ε → 0. The integrals over γ2, γ3 and γ4 tend to zero as R → ∞. The sum
of the integrals over γ1 and γ5 is equal to 2

∫ R
ε

sinx
x
dx. Thus J(t) = π/2 for t > 0,

J(0) = 0 and J(t) = −π/2 for t < 0.

4. Prove that for any real number a > 1, the equation zea−z = 1 has exactly one solution
in the unit disc, and that this solution is real and positive.

Solution: Set f(z) = z− ez−a. When |z| = 1 we have |ez−a| = eRe z−a < 1 = |z|, so by
Rouché’s theorem, f has the same number of zeros as the function z in the unit disc,
namely one. Now f is real-valued on the real interval [0, 1], with f(0) = −e−a < 0 and
f(1) = 1− e1−a > 0, so, by continuity, f has a zero on the interval (0, 1).
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5. Let f(z) be a complex-valued C∞ function defined on a connected open subset Ω of
the complex plane. Assume that f(z) and f 2(z) are both harmonic (i.e. the real and
imaginary parts of these functions are harmonic). Prove that either f(z) or f(z) is
analytic in Ω.

Solution: A direct computation shows that ∆f 2 = 2f∆f +2(f 2
x +f 2

y ), so the assump-
tion ∆f = ∆f 2 = 0 gives 0 = f 2

x + f 2
y = (fx + ify)(fx− ify) in Ω. If fx− ify ≡ 0 in Ω,

then f̄ is analytic in Ω. On the other hand, if fx − ify 6≡ 0, then there exists an open
subset D ⊂ Ω where fx + ify 6= 0, and hence fx − ify = 0 on D. Thus f is analytic on
D. We claim that f is in fact analytic on all of Ω. To see this, write f = u+ iv. Then
u is harmonic on Ω, and hence admits a harmonic conjugate v′ on Ω, that is, u + iv′

is analytic on Ω. Now v′ is unique up to a constant (since Ω is connected) so we may
assume v′ = v on D. Then v′−v is a real-valued harmonic function on Ω that vanishes
on D, and hence must vanish everywhere. Thus f = u+ iv = u+ iv′ is analytic on Ω.
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