Analysis Qualifying Review. January 7, 2017

Morning Session, 9:00 am - 12:00 pm

- 1. (a) Let f_n be a sequence of continuous real-valued functions on [0, 1] which converges uniformly to f. Prove that $\lim_{n\to\infty} f_n(x_n) = f(1/2)$ for any sequence $\{x_n\}$ that converges to 1/2.
 - (b) Suppose the convergence $f_n \to f$ is only pointwise. Does the conclusion still hold? Explain.

Solution

(a) Fix $\epsilon > 0$ and let $N_0 \in \mathbb{N}$ be such that $n \ge N_0$ implies $|f_n(x) - f(x)| < \epsilon/2$ for all $x \in [0, 1]$.

Since the convergence is uniform, f is continuous, so we can pick $\delta > 0$ such that $|f(x) - f(1/2)| < \epsilon/2$ for all $x \in [0,1]$ with $|x - 1/2| < \delta$. Let $N_1 \in \mathbb{N}$ be such that $n \ge N_1$ implies $|x_n - 1/2| < \delta$. Then $n \ge \max\{N_0, N_1\}$ implies $|f_n(x_n) - f(1/2)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(1/2)| < \epsilon/2 + \epsilon/2 = \epsilon$.

(b) The conclusion is false, as the following counterexample shows: Define

$$f_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1/2 - 1/2n \\ 2nx - (n-1) & \text{if } 1/2 - 1/2n \le x \le 1/2 \\ 1 & \text{if } 1/2 \le x \le 1 \end{cases}$$
(1)

Let $x_n = 1/2 - 1/n$. Then $x_n \to 1/2$ but $f(1/2) = 1 \neq 0 = \lim_n f_n(x_n)$.

2. Show that

$$x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$
(2)

for $-\pi \leq x \leq \pi$.

Solution: Consider the periodic function $f : \mathbb{R} \to \mathbb{R}$ of period 2π and defined by $f(x) = x^2$ for $-\pi \leq x \leq \pi$. Its Fourier series converges uniformly since f is Lipschitz continuous (for example). Now the *n*th Fourier coefficient is

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} dx$$

A direct calculation shows that $\hat{f}(0) = \pi^2/3$ and $\hat{f}(n) = \frac{2(-1)^n}{n^2}$ for $n \neq 0$. Hence

$$f(x) = \sum_{-\infty}^{\infty} \hat{f}(n)e^{inx},$$

which yields the desired formula since $e^{inx} + e^{-inx} = 2\cos nx$.

3. Let R be the unit square $[0,1] \times [0,1]$ in the plane, and let μ be the usual Lebesgue measure on the real Cartesian plane. Let N be the function that assigns to each real number x in the unit interval the positive integer that indicates the first place in the decimal expansion of x after the decimal point where the first 0 occurs. If there are two expansions, use the expansion that ends in a string of zeroes. If 0 does not occur, let $N(x) = \infty$. For example, N(0.0) = 1, N(0.5) = 2, $N(1/9) = \infty$, and N(0.4763014...) = 5. Evaluate $\iint_R y^{-N(x)} d\mu$.

Solution: The interval [0,1] consists of one interval of length $\frac{1}{10}$ where N = 1, 9 intervals of length 10^{-2} where N = 2, and, in general, 9^{k-1} intervals of length 10^{-k} where N = k. It follows that for y fixed,

$$\int_0^1 y^{-N(x)} dx = \sum_{k=1}^\infty 9^k 10^{-k} y^{-k}$$
$$= \frac{y}{10} \frac{1}{1 - \frac{9}{10y}}$$
$$= \frac{y}{10 - 9y}.$$

Hence, by the Fubini-Tonelli theorem,

$$\iint_{R} y^{-N(x)} d\mu = \int_{0}^{1} \frac{y}{10 - 9y} dy = \int_{0}^{1} \left(-\frac{1}{9} + \frac{10}{81} \frac{1}{\frac{10}{9} - y} \right) dy = \frac{10}{81} \log 10 - \frac{1}{9}.$$

4. Let $(f_n)_1^\infty$ be a sequence in $L^p(\mu)$, where $1 \le p < \infty$. Show that if $\lim ||f_n - f||_p = 0$, where $f \in L^p(\mu)$, then (f_n) converges to f in measure.

Solution: Pick $\epsilon > 0$ and consider the measurable set

$$E_{n,\epsilon} := \{ x \in X | f_n(x) - f(x) | \ge \epsilon \}.$$

for $n \ge 1$. Then

$$\int |f_n - f|^p d\mu \ge \int \chi_{E_{n,\epsilon}} |f_n - f|^p d\mu \ge \epsilon^p \int \chi_{E_{n,\epsilon}} d\mu = \epsilon^p \mu(E_{n,\epsilon}).$$
(3)

Since the left hand side tends to zero as $n \to \infty$, we see that $\lim_{n\to\infty} \mu(E_{n,\epsilon}) = 0$ for every $\epsilon > 0$, which precisely means that $f_n \to f$ in measure.

Analysis Qualifying Review. January 7, 2017

Afternoon Session, 2:00 pm - 5:00 pm

1. Let f(z) and g(z) be entire functions for which there exists a constant C > 0 such that $|f(z)| \leq C|g(z)|$ for all z. Prove that there exists a constant c such that f(z) = cg(z) for all z.

Solution: If g is identically zero then so is f and any c will do. Otherwise, g has isolated zeros. The function h(z) = f(z)/g(z) is holomorphic outside the zeros of g and satisfies $|h(z)| \leq C$. It suffices to prove that h extends to an entire function, since then h will be a bounded entire function, and hence constant by Liouville's Theorem. Now consider any zero z_0 of g. We can write $f(z) = (z - z_0)^m \tilde{f}(z)$ and $g(z) = (z - z_0)^n \tilde{g}(z)$, where m and n are nonnegative integers and where \tilde{f} , \tilde{g} are holomorphic near z_0 (in fact, they are entire) and do not vanish at z_0 . The estimate $|f(z)| \leq C|g(z)|$ implies that $m \geq n$. Thus $h(z) = (z - z_0)^{m-n} \tilde{f}(z)/\tilde{g}(z)$ in a punctured neighborhood of z_0 , and the right-hand side is a holomorphic function in a neighborhood of z_0 . Thus h(z) extends to a holomorphic function in a neighborhood of z_0 . Thus h(z) extends to a holomorphic function in a neighborhood of z_0 .

2. Find a conformal mapping w = f(z) that takes the first quadrant in the z-plane onto the unit disc in the w-plane, and such that f(0) = 1, f(1+i) = 0.

Solution: First set $\zeta = z^2$. This takes the first quadrant onto the upper half plane, z = 0 to $\zeta = 0$ and z = 1 + i to $\zeta = 2i$. Now set $w = \frac{2i-\zeta}{\zeta+2i}$. This takes the upper half plane to the unit circle, $\zeta = 0$ to w = 1, and $\zeta = 2i$ to w = 0. Thus we can set

$$w = f(z) = \frac{2i - z^2}{z^2 + 2i}.$$

3. Find all analytic functions on the unit disc that satisfy $f'(\frac{1}{n}) = f(\frac{1}{n})$ for $n = 2, 3, 4, \ldots$. Justify your answer.

Solution: The function g(z) := f'(z) - f(z) has zeros at the points $z = \frac{1}{n}$, $n \ge 2$, and these points accumulate at the origin, so we must have $g(z) \equiv 0$, that is, f'(z) = f(z). This implies $\frac{d}{dz}(e^{-z}f(z)) = 0$, so $f(z) = ce^{z}$ for some complex number c. Conversely, if $f(z) = ce^{z}$, then it is clear that f' = f, and in particular $f'(\frac{1}{n}) = f(\frac{1}{n})$ for $n \ge 2$.

4. Let $a \in \mathbb{C}$ with $|a| \neq 1$. Evaluate the integral

$$\oint_{|z|=1} \frac{\overline{z}}{a-z^{100}} \, dz.$$

Solution: Using $\overline{z}z = 1$ for |z| = 1, the integral is

$$\oint_{|z|=1} \frac{1}{z(a-z^{100})} dz = \oint_{|z|=1} f(z) dz$$

If |a| > 1, then f has a exactly one simple pole at z = 0 in |z| < 1. and the residue of f is 1/a there, so the integral is equal to $\frac{2\pi i}{a}$.

If instead |a| < 1, then there are 101 poles in |z| < 1 and no poles on |z| > 1. We can therefore replace the countour |z| = 1 by |z| = R, for $R \gg 1$. As $R \to \infty$, it follows from the Cachy estimates (ML bound) that the integral is zero.

5. Let f(z) be an analytic function in the unit disc $\{|z| < 1\}$. Prove that there exists a sequence $(z_n)_1^{\infty}$ in the disc such that $\lim_{n\to\infty} |z_n| = 1$ and such that $\sup_n |f(z_n)| < \infty$.

Solution: Suppose no such sequence exists. Then f only have finitely many zeros in the disc, say at $z = a_i$, $1 \le i \le r$, with multiplicities m_i , $1 \le i \le r$. Set $p(z) = \prod_{i=1}^r (z - a_i)^{m_i}$. Then the function h(z) = p(z)/f(z) is analytic on the unit disc and tends to zero at the boundary. It then follows from the Cauchy estimates (or the maximum principle) that h is identically zero, a contradiction.

5. Suppose that $f \in L^p([-1,1])$ for all $1 \le p < \infty$. Prove that the integral

$$\int_{-1}^{1} \frac{|f(x)|}{|x|^s} \, dx$$

is finite for all 0 < s < 1.

Solution: This follows from Hölders inequality. Pick p sufficiently large so that $q=\frac{p}{p-1} < s^{-1}.$ Then

$$\int_{-1}^{1} \frac{|f(x)|}{|x|^{s}} dx \le \|f\|_{p} \left(\int_{-1}^{1} |x|^{-qs} dx \right)^{1/q} < \infty.$$