
Analysis Qualifying Review. January 7, 2017 
Morning Session, 9:00 am - 12:00 pm

1. (a) Let fn be a sequence of continuous real-valued functions on [0, 1] which converges
uniformly to f . Prove that limn→∞ fn(xn) = f(1/2) for any sequence {xn} that
converges to 1/2.

(b) Suppose the convergence fn → f is only pointwise. Does the conclusion still hold?
Explain.

Solution

(a) Fix ε > 0 and let N0 ∈ N be such that n ≥ N0 implies |fn(x)− f(x)| < ε/2 for all
x ∈ [0, 1].

Since the convergence is uniform, f is continuous, so we can pick δ > 0 such
that |f(x) − f(1/2)| < ε/2 for all x ∈ [0, 1] with |x − 1/2| < δ. Let N1 ∈ N
be such that n ≥ N1 implies |xn − 1/2| < δ. Then n ≥ max{N0, N1} implies
|fn(xn)− f(1/2)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(1/2)| < ε/2 + ε/2 = ε.

(b) The conclusion is false, as the following counterexample shows: Define

fn(x) =


0 if 0 ≤ x < 1/2− 1/2n

2nx− (n− 1) if 1/2− 1/2n ≤ x ≤ 1/2

1 if 1/2 ≤ x ≤ 1

(1)

Let xn = 1/2− 1/n. Then xn → 1/2 but f(1/2) = 1 6= 0 = limn fn(xn).

2. Show that

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx (2)

for −π ≤ x ≤ π.

Solution: Consider the periodic function f : R → R of period 2π and defined by
f(x) = x2 for −π ≤ x ≤ π. Its Fourier series converges uniformly since f is Lipschitz
continuous (for example). Now the nth Fourier coefficient is

f̂(n) =
1

2π

∫ π

−π
x2e−inxdx

A direct calculation shows that f̂(0) = π2/3 and f̂(n) = 2(−1)n
n2 for n 6= 0. Hence

f(x) =
∞∑
−∞

f̂(n)einx,
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which yields the desired formula since einx + e−inx = 2 cosnx.

3. Let R be the unit square [0, 1] × [0, 1] in the plane, and let µ be the usual Lebesgue
measure on the real Cartesian plane. Let N be the function that assigns to each
real number x in the unit interval the positive integer that indicates the first place in
the decimal expansion of x after the decimal point where the first 0 occurs. If there
are two expansions, use the expansion that ends in a string of zeroes. If 0 does not
occur, let N(x) = ∞. For example, N(0.0) = 1, N(0.5) = 2, N(1/9) = ∞, and
N(0.4763014 . . . ) = 5. Evaluate

∫∫
R
y−N(x) dµ.

Solution: The interval [0, 1] consists of one interval of length 1
10

where N = 1, 9
intervals of length 10−2 where N = 2, and, in general, 9k−1 intervals of length 10−k

where N = k. It follows that for y fixed,∫ 1

0

y−N(x) dx =
∞∑
k=1

9k10−ky−k

=
y

10

1

1− 9
10y

=
y

10− 9y
.

Hence, by the Fubini-Tonelli theorem,∫∫
R

y−N(x) dµ =

∫ 1

0

y

10− 9y
dy =

∫ 1

0

(
−1

9
+

10

81

1
10
9
− y

)
dy =

10

81
log 10− 1

9
.

4. Let (fn)∞1 be a sequence in Lp(µ), where 1 ≤ p <∞. Show that if lim ||fn − f ||p = 0,
where f ∈ Lp(µ), then (fn) converges to f in measure.

Solution: Pick ε > 0 and consider the measurable set

En,ε := {x ∈ X |fn(x)− f(x)| ≥ ε}.

for n ≥ 1. Then∫
|fn − f |pdµ ≥

∫
χEn,ε|fn − f |pdµ ≥ εp

∫
χEn,εdµ = εpµ(En,ε). (3)

Since the left hand side tends to zero as n → ∞, we see that limn→∞ µ(En,ε) = 0 for
every ε > 0, which precisely means that fn → f in measure.
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Analysis Qualifying Review. January 7, 2017 
Afternoon Session, 2:00 pm - 5:00 pm

1. Let f(z) and g(z) be entire functions for which there exists a constant C > 0 such that
|f(z)| ≤ C|g(z)| for all z. Prove that there exists a constant c such that f(z) = cg(z)
for all z.

Solution: If g is identically zero then so is f and any c will do. Otherwise, g has
isolated zeros. The function h(z) = f(z)/g(z) is holomorphic outside the zeros of g and
satisfies |h(z)| ≤ C. It suffices to prove that h extends to an entire function, since then
h will be a bounded entire function, and hence constant by Liouville’s Theorem. Now
consider any zero z0 of g. We can write f(z) = (z− z0)mf̃(z) and g(z) = (z− z0)ng̃(z),
where m and n are nonnegative integers and where f̃ , g̃ are holomorphic near z0 (in
fact, they are entire) and do not vanish at z0. The estimate |f(z)| ≤ C|g(z)| implies
that m ≥ n. Thus h(z) = (z − z0)m−nf̃(z)/g̃(z) in a punctured neighborhood of z0,
and the right-hand side is a holomorphic function in a neighborhood of z0. Thus h(z)
extends to a holomorphic function in a neighborhood of z0. This completes the proof
since z0 was an arbitrary zero of g.

2. Find a conformal mapping w = f(z) that takes the first quadrant in the z-plane onto
the unit disc in the w-plane, and such that f(0) = 1, f(1 + i) = 0.

Solution: First set ζ = z2. This takes the first quadrant onto the upper half plane,
z = 0 to ζ = 0 and z = 1 + i to ζ = 2i. Now set w = 2i−ζ

ζ+2i
. This takes the upper half

plane to the unit circle, ζ = 0 to w = 1, and ζ = 2i to w = 0. Thus we can set

w = f(z) =
2i− z2

z2 + 2i
.

3. Find all analytic functions on the unit disc that satisfy f ′( 1
n
) = f( 1

n
) for n = 2, 3, 4, . . . .

Justify your answer.

Solution: The function g(z) := f ′(z)− f(z) has zeros at the points z = 1
n
, n ≥ 2, and

these points accumulate at the origin, so we must have g(z) ≡ 0, that is, f ′(z) = f(z).
This implies d

dz
(e−zf(z)) = 0, so f(z) = cez for some complex number c. Conversely,

if f(z) = cez, then it is clear that f ′ = f , and in particular f ′( 1
n
) = f( 1

n
) for n ≥ 2.
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4. Let a ∈ C with |a| 6= 1. Evaluate the integral∮
|z|=1

z

a− z100
dz.

Solution: Using zz = 1 for |z| = 1, the integral is∮
|z|=1

1

z(a− z100)
dz =

∮
|z|=1

f(z)dz

If |a| > 1, then f has a exactly one simple pole at z = 0 in |z| < 1. and the residue of
f is 1/a there, so the integral is equal to 2πi

a
.

If instead |a| < 1, then there are 101 poles in |z| < 1 and no poles on |z| > 1. We can
therefore replace the countour |z| = 1 by |z| = R, for R � 1. As R → ∞, it follows
from the Cachy estimates (ML bound) that the integral is zero.

5. Let f(z) be an analytic function in the unit disc {|z| < 1}. Prove that there exists a
sequence (zn)∞1 in the disc such that limn→∞ |zn| = 1 and such that supn |f(zn)| <∞.

Solution: Suppose no such sequence exists. Then f only have finitely many zeros in
the disc, say at z = ai, 1 ≤ i ≤ r, with multiplicities mi, 1 ≤ i ≤ r. Set p(z) =∏r

i=1(z − ai)mi . Then the function h(z) = p(z)/f(z) is analytic on the unit disc and
tends to zero at the boundary. It then follows from the Cauchy estimates (or the
maximum principle) that h is identically zero, a contradiction.
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5. Suppose that f ∈ Lp([−1, 1]) for all 1 ≤ p <∞. Prove that the integral∫ 1

−1

|f(x)|
|x|s

dx

is finite for all 0 < s < 1.

Solution: This follows from Hölders inequality. Pick p sufficiently large so that q =
p
p−1 < s−1. Then

∫ 1

−1

|f(x)|
|x|s

dx ≤ ‖f‖p
(∫ 1

−1
|x|−qs dx

)1/q

<∞.
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