Algebra I QR Jan 2024

Problem 1. Let V be a d-dimensional vector space over \mathbb{C}. Let $W=\bigwedge^{d-1} V$. Show that every vector $w \in W$ is of the form $w=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{d-1}$, where $v_{i} \in V$.
Problem 2. Let $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ be the group homomorphism given by left multiplication by the matrix

$$
\left[\begin{array}{ccc}
15 & -27 & 0 \\
-9 & 45 & 15 \\
-9 & 33 & 9
\end{array}\right] .
$$

Describe the cokernel of the map f as a sum of cyclic groups.
Problem 3. Consider the three rings $R_{i}:=\mathbb{C}[x, y] /\left(x^{2}-y^{i}\right)$ for $i=1,2,3$. Show that these three rings are pairwise non-isomorphic.

Problem 4. Suppose that X and Y are skew-symmetric $n \times n$ matrices with entries in \mathbb{R}. For $A, B \in \operatorname{Mat}_{n, n}(\mathbb{R})$, define $\langle A, B\rangle=\operatorname{Tr}\left(A^{t} X B Y\right)$ where Tr denotes the trace and A^{t} is the transpose of A.
(1) Show that $\langle\cdot, \cdot\rangle$ is a symmetric bilinear form.
(2) If $n=2$ and $X=Y=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, what is the signature of $\langle\cdot, \cdot\rangle$?

Problem 5. Let A be an integral domain and M be an A-module. We say that M is torsion-free if for $a \in A$ and $m \in M$, we have $a \cdot m=0$ only if $a=0$ or $m=0$.
(a) Let A be a principal ideal domain. Suppose that M and N are torsion-free, finitelygenerated A-modules. Prove that $M \otimes_{A} N$ is torsion-free.
(b) Let A be the ring $\mathbb{C}[x, y]$ and let M be the ideal $(x, y) \subset A$ be viewed as an A module. Show that $M \otimes_{A} M$ is not torsion-free.

