Algebra II QR - January 2024

Problem 1. Let G be a finite simple group which contains an element of order 55. Prove that the index of any proper subgroup of G is at least 16 .

Solution. Let $H \subset G$ be a proper subgroup of index $n=[G: H]$. The action of G on the set of left cosets G / H defines a homomorphism $\rho: G \rightarrow S_{n}$ to the symmetric group on n elements. The kernel $\operatorname{ker}(\rho)$ is a normal subgroup of G which is contained in the proper subgroup H, so $\operatorname{ker}(\rho)$ must be trivial as G is simple. Thus, ρ is injective and S_{n} contains an element σ of order 55 . The order of an element of S_{n} is the least common multiple of the lengths of the cycles in its cycle decomposition, so σ must decompose into a product of disjoint cycles of lengths 5 and 11 . In particular, $n \geq 5+11=16$.

Problem 2. Prove that any group of order $455=5 \cdot 7 \cdot 13$ is abelian.
Solution. The Sylow theorems show there exists either 1 or 91 Sylow 5 -subgroups, there is a unique Sylow 7 -subgroup $N_{7} \subset G$, and there is a unique Sylow 13 -subgroup $N_{13} \subset G$, with N_{7} and N_{13} both normal. The map $G \rightarrow G / N_{7} \times G / N_{13}$ is injective since N_{7} and N_{13} have relatively prime orders. We win since G / N_{7} and G / N_{13} are abelian by the following observation: For primes $p<q$ with $q \not \equiv 1(\bmod p)$, any group A of order $p q$ splits as a product $A \cong \mathbf{Z} / p \times \mathbf{Z} / q$. (Indeed, by the Sylow theorems there are normal subgroups $P \subset A$ and $Q \subset A$ of sizes p and q, and for order reasons we must have $P \cap Q=\{1\}$ and $P Q=A$, hence $A \cong P \times Q$ splits as the direct product.)

Problem 3. Let $f(x) \in k[x]$ be an irreducible polynomial where k is a field of characteristic 0 with algebraic closure \bar{k}. Prove that there does not exist an element $a \in \bar{k}$ so that $f(a)=f(a+1)=0$.

Solution. Let $K \subset \bar{k}$ be the splitting field for $f(x)$ in \bar{k}. Since $f(x)$ is irreducible, the Galois group $\operatorname{Gal}(K / k)$ acts transitively on the roots of $f(x)$. In particular, if $a \in \bar{k}$ is such that $f(a)=f(a+1)=0$, then $a \in K$ and there exists $\sigma \in \operatorname{Gal}(K / k)$ such that $\sigma(a)=a+1$. Then $\sigma^{n}(a)=a+n$ is a root of $f(x)$ for every integer n. Since the number of roots of $f(x)$ is finite, this is only possible if the characteristic of k is positive.

Problem 4. Let $f(x) \in F[x]$ an irreducible, separable polynomial over a field F, and let E be a splitting field for $f(x)$ over F. Prove that if $\operatorname{Gal}(E / F)$ is abelian, then for any root $a \in E$ of $f(x)$ we have $E=F(a)$.

Solution. Since $\operatorname{Gal}(E / F)$ is abelian any subgroup is normal, so by the Galois correspondence K / F is Galois for any intermediate field extension $F \subset K \subset E$. In particular, for any root a of $f(x)$ the extension $F(a) / F$ is Galois, so it must contain every root of the polynomial $f(x)$, i.e. $F(a)=E$.

Problem 5. Prove that $\mathbf{Q}(\sqrt{2+\sqrt{2}})$ is a Galois field extension of \mathbf{Q}, and compute its Galois group.

Hint: The following two facts may be useful.
(1) (Eisenstein's criterion) If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbf{Z}[x]$ and p is a prime such that p divides all a_{i} but p^{2} does not divide a_{0}, then $f(x)$ is irreducible as an element of $\mathbf{Q}[x]$.
(2) If $\alpha=\sqrt{2+\sqrt{2}}$ and $\beta=\sqrt{2-\sqrt{2}}$, then $\alpha \beta=\sqrt{2}$

Solution. A computation shows that $f(x)=x^{4}-4 x^{2}+2$ has roots $\pm \alpha$ and $\pm \beta$, where $\alpha=\sqrt{2+\sqrt{2}}$ and $\beta=\sqrt{2-\sqrt{2}}$. We claim $K=\mathbf{Q}(\sqrt{2+\sqrt{2}})$ is the splitting field of $f(x)=x^{4}-4 x^{2}+2$, and hence is Galois. Clearly $\pm \alpha \in K$. Note that $\sqrt{2}=\alpha^{2}-2 \in K$, so from $\alpha \beta=\sqrt{2}$ we find $\pm \beta \in K$ as well.

Next we prove that $\operatorname{Gal}(K / \mathbf{Q}) \cong \mathbf{Z} / 4$. First note that the polynomial $f(x) \in \mathbf{Q}[x]$ is irreducible by Eisenstein's criterion at the prime 2. Thus $[K: \mathbf{Q}]=4$ and we have either $\operatorname{Gal}(K / \mathbf{Q}) \cong \mathbf{Z} / 4$ or $\operatorname{Gal}(K / \mathbf{Q}) \cong \mathbf{Z} / 2 \times \mathbf{Z} / 2$. To show the first case holds, it suffices to show that there exists $\sigma \in \operatorname{Gal}(K / \mathbf{Q})$ of order greater than 2. Choose σ so that $\sigma(\alpha)=\beta$. From the computations above we find $\beta=\left(\alpha^{2}-2\right) / \alpha$, and thus

$$
\sigma^{2}(\alpha)=\frac{\beta^{2}-2}{\beta}=-\frac{\sqrt{2}}{\sqrt{2-\sqrt{2}}}=-\frac{\sqrt{2}}{\beta}=-\alpha
$$

This shows σ has order greater than 2 .

