
Algebra II QR — January 2024

Problem 1. Let G be a finite simple group which contains an element of order 55.
Prove that the index of any proper subgroup of G is at least 16.

Solution. Let H ⊂ G be a proper subgroup of index n = [G : H]. The action of G on
the set of left cosets G/H defines a homomorphism ρ : G→ Sn to the symmetric group
on n elements. The kernel ker(ρ) is a normal subgroup of G which is contained in the
proper subgroup H, so ker(ρ) must be trivial as G is simple. Thus, ρ is injective and Sn

contains an element σ of order 55. The order of an element of Sn is the least common
multiple of the lengths of the cycles in its cycle decomposition, so σ must decompose
into a product of disjoint cycles of lengths 5 and 11. In particular, n ≥ 5 + 11 = 16.

Problem 2. Prove that any group of order 455 = 5 · 7 · 13 is abelian.

Solution. The Sylow theorems show there exists either 1 or 91 Sylow 5-subgroups,
there is a unique Sylow 7-subgroup N7 ⊂ G, and there is a unique Sylow 13-subgroup
N13 ⊂ G, with N7 and N13 both normal. The map G→ G/N7×G/N13 is injective since
N7 and N13 have relatively prime orders. We win since G/N7 and G/N13 are abelian
by the following observation: For primes p < q with q 6≡ 1 (mod p), any group A of
order pq splits as a product A ∼= Z/p× Z/q. (Indeed, by the Sylow theorems there are
normal subgroups P ⊂ A and Q ⊂ A of sizes p and q, and for order reasons we must
have P ∩Q = {1} and PQ = A, hence A ∼= P ×Q splits as the direct product.)

Problem 3. Let f(x) ∈ k[x] be an irreducible polynomial where k is a field of charac-
teristic 0 with algebraic closure k̄. Prove that there does not exist an element a ∈ k̄ so
that f(a) = f(a+ 1) = 0.

Solution. Let K ⊂ k̄ be the splitting field for f(x) in k̄. Since f(x) is irreducible, the
Galois group Gal(K/k) acts transitively on the roots of f(x). In particular, if a ∈ k̄ is
such that f(a) = f(a + 1) = 0, then a ∈ K and there exists σ ∈ Gal(K/k) such that
σ(a) = a+1. Then σn(a) = a+n is a root of f(x) for every integer n. Since the number
of roots of f(x) is finite, this is only possible if the characteristic of k is positive.

Problem 4. Let f(x) ∈ F [x] an irreducible, separable polynomial over a field F , and
let E be a splitting field for f(x) over F . Prove that if Gal(E/F ) is abelian, then for
any root a ∈ E of f(x) we have E = F (a).

Solution. Since Gal(E/F ) is abelian any subgroup is normal, so by the Galois corre-
spondence K/F is Galois for any intermediate field extension F ⊂ K ⊂ E. In particular,
for any root a of f(x) the extension F (a)/F is Galois, so it must contain every root of
the polynomial f(x), i.e. F (a) = E.

Problem 5. Prove that Q(
√

2 +
√

2) is a Galois field extension of Q, and compute its
Galois group.

Hint : The following two facts may be useful.
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(1) (Eisenstein’s criterion) If f(x) = xn+an−1x
n−1+ · · ·+a0 ∈ Z[x] and p is a prime

such that p divides all ai but p2 does not divide a0, then f(x) is irreducible as
an element of Q[x].

(2) If α =
√

2 +
√

2 and β =
√

2−
√

2, then αβ =
√

2

Solution. A computation shows that f(x) = x4−4x2 + 2 has roots ±α and ±β, where

α =
√

2 +
√

2 and β =
√

2−
√

2. We claim K = Q(
√

2 +
√

2) is the splitting field of
f(x) = x4−4x2 + 2, and hence is Galois. Clearly ±α ∈ K. Note that

√
2 = α2−2 ∈ K,

so from αβ =
√

2 we find ±β ∈ K as well.
Next we prove that Gal(K/Q) ∼= Z/4. First note that the polynomial f(x) ∈ Q[x]

is irreducible by Eisenstein’s criterion at the prime 2. Thus [K : Q] = 4 and we have
either Gal(K/Q) ∼= Z/4 or Gal(K/Q) ∼= Z/2 × Z/2. To show the first case holds, it
suffices to show that there exists σ ∈ Gal(K/Q) of order greater than 2. Choose σ so
that σ(α) = β. From the computations above we find β = (α2 − 2)/α, and thus

σ2(α) =
β2 − 2

β
= −

√
2√

2−
√

2
= −
√

2

β
= −α.

This shows σ has order greater than 2.


