Algebra I QR January 2024

Problem 1. Let V be a d-dimensional vector space over \mathbb{C}. Let $W=\bigwedge^{d-1} V$. Show that every vector $w \in W$ is of the form $w=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{d-1}$, where $v_{i} \in V$.

Solution. Let $e_{1}, e_{2}, \ldots, e_{d}$ be a basis of V. Then $w_{i}:=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{i-1} \wedge e_{i+1} \wedge \cdots \wedge e_{d}$ for $i=1,2, \ldots, d$ form a basis of W. Let $w \in W$. If w is the 0 -vector then clearly $w=0 \wedge 0 \wedge \cdots \wedge 0$. Otherwise, we may write $w=\sum_{i=1}^{d} a_{i} w_{i}$ where the $a_{i} \in \mathbb{C}$ are not all equal to 0 . By relabeling the basis e_{1}, \ldots, e_{d}, we may assume that $a_{d} \neq 0$ and by replacing w with a nonzero scalar multiple we may assume that $a_{1}=1$. Thus

$$
w=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{d-1} w_{d-1}+w_{d}
$$

for some $a_{1}, a_{2}, \ldots, a_{d-1} \in \mathbb{C}$. We claim that

$$
w=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{d-1}
$$

where $v_{i}=e_{i}+(-1)^{d-i-1} a_{i} e_{d}$. This can be checked directly.
Problem 2. Let $f: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ be the group homomorphism given by left multiplication by the matrix

$$
\left[\begin{array}{ccc}
15 & -27 & 0 \\
-9 & 45 & 15 \\
-9 & 33 & 9
\end{array}\right]
$$

Describe the cokernel of the map f as a sum of cyclic groups.
Solution. By a sequence of (determinant one) row and column operations, we find that

$$
\left[\begin{array}{ccc}
-7 & 18 & -30 \\
3 & -7 & 12 \\
18 & -43 & 73
\end{array}\right]\left[\begin{array}{ccc}
15 & -27 & 0 \\
-9 & 45 & 15 \\
-9 & 33 & 9
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & 3 \\
0 & 1 & -1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 12
\end{array}\right]
$$

It follows that the cokernel is the direct sum $\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$. (The above decomposition is not unique, and it is only necessary to compute the diagonal matrix to solve this problem.)

Problem 3. Consider the three rings $R_{i}:=\mathbb{C}[x, y] /\left(x^{2}-y^{i}\right)$ for $i=1,2,3$. Show that these three rings are pairwise non-isomorphic.

Solution. We have $R_{1}=\mathbb{C}[x, y] /\left(x^{2}-y\right) \cong \mathbb{C}[y]$ which is a principal ideal domain. We have $R_{2}=\mathbb{C}[x, y] /\left(x^{2}-y^{2}\right)=\mathbb{C}[x, y] /(x+y)(x-y)$. Since $(x+y)(x-y)=0$ in R_{2} and $(x+y)$ and $(x-y)$ are both nonzero, we have that R_{2} is not an integral domain, and in particular not isomorphic to R_{1}.

We have $R_{3}=\mathbb{C}[x, y] /\left(x^{2}-y^{3}\right)$. We claim that R_{3} is an integral domain that is not a unique factorization domain. Since every principal ideal domain is a unique
factorization domain, it follows that R_{3} is not isomorphic to either R_{1} or R_{2}. We now prove the claim.

The ring $\mathbb{C}[x, y]$ is a unique factorization domain. We shall show that the element $x^{2}-y^{3} \in \mathbb{C}[x, y]$ is irreducible. Consider any factorization $x^{2}-y^{3}=f g$ in $\mathbb{C}[x, y]$ where f, g are not units. Thus $f=f(x, y), g=g(x, y)$ are non-constant polynomials. By a direct calculation, we see that f, g must both involve the variable x, and by considering the coefficient of the highest power of x, we see that $f(x, y)=a x+f_{1}(y)$ and $g(x, y)=b x+g_{1}(y)$ where $a, b \in \mathbb{C}$. Thus we have the equality $x^{2}-y^{3}=$ $a b x^{2}+x\left(a g_{1}(y)+b f_{1}(y)\right)+f_{1}(y) g_{1}(y)$. Since $f_{1}(y) g_{1}(y)=y^{3}$, both f_{1} and g_{1} are scalar multiples of powers of y. It follows that $a g_{1}(y)+b f_{1}(y)$ cannot be 0 and thus $x^{2}-y^{3}$ is irreducible.

It follows that the ideal $\left(x^{2}-y^{3}\right)$ is prime and R_{3} is an integral domain. The ring R_{3} has a grading where $\operatorname{deg}(x)=3$ and $\operatorname{deg}(y)=2$. The ring has no elements of degree 1 , and it follows that x and y are irreducible elements of R_{3}. The element $x^{2} \in R_{3}$ has the two distinct irreducible factorizations $x^{2}=(x)(x)=(y)(y)(y)$. This shows that R_{3} is not a unique factorization domain.
(An alternative way to show that R_{3} is not a principal ideal domain is to show directly that the ideal (x, y) is not principal.)

Problem 4. Suppose that X and Y are skew-symmetric $n \times n$ matrices with entries in \mathbb{R}. For $A, B \in \operatorname{Mat}_{n, n}(\mathbb{R})$, define $\langle A, B\rangle=\operatorname{Tr}\left(A^{t} X B Y\right)$ where Tr denotes the trace and A^{t} is the transpose of A.
(a) Show that $\langle\cdot, \cdot\rangle$ is a symmetric bilinear form.
(b) If $n=2$ and $X=Y=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, what is the signature of $\langle\cdot, \cdot\rangle$?

Solution. (a) Bilinearity follows from
$\operatorname{Tr}\left(\left(\alpha A_{1}+\beta A_{2}\right)^{t} X B Y\right)=\operatorname{Tr}\left(\left(\alpha A_{1}\right)^{t} X B Y+\left(\beta A_{2}\right)^{t} X B Y\right)=\operatorname{Tr}\left(\left(\alpha A_{1}\right)^{t} X B Y\right)+\operatorname{Tr}\left(\left(\beta A_{2}\right)^{t} X B Y\right)$
$\operatorname{Tr}\left(A^{t} X\left(\alpha B_{1}+\beta B_{2}\right) Y\right)=\operatorname{Tr}\left(A^{t} X\left(\alpha B_{1}\right) Y+A^{t} X\left(\beta B_{2}\right) Y\right)=\operatorname{Tr}\left(A^{t} X\left(\alpha B_{1}\right) Y\right)+\operatorname{Tr}\left(A^{t} X\left(\beta B_{2}\right) Y\right)$
and symmetry is

$$
\operatorname{Tr}\left(A^{t} X B Y\right)=\operatorname{Tr}\left(Y^{t} B^{t} X^{t} A\right)=\operatorname{Tr}\left(B^{t} X A Y\right)
$$

using skew-symmetry of X, Y and the fact that $\operatorname{Tr}(C)=\operatorname{Tr}\left(C^{t}\right)$ and $\operatorname{Tr}(C D)=\operatorname{Tr}(D C)$ for any square matrices C, D.
(b) Pick a basis

$$
e_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \quad e_{2}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad e_{3}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \quad e_{4}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

of $\operatorname{Mat}_{2,2}(\mathbb{R})$. Then the matrix $M=\left(m_{i j}=\left\langle e_{i}, e_{j}\right\rangle\right)$ is given by

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

This matrix has eigenvalues $1,1,-1,-1$ and thus $\langle.,$.$\rangle has signature (2,2,0)$ (positive, negative, zero).

Problem 5. Let A be an integral domain and M be an A-module. We say that M is torsion-free if for $a \in A$ and $m \in M$, we have $a \cdot m=0$ only if $a=0$ or $m=0$.
(a) Let A be a principal ideal domain. Suppose that M and N are torsion-free, finitely-generated A-modules. Prove that $M \otimes_{A} N$ is torsion-free.
(b) Let A be the ring $\mathbb{C}[x, y]$ and let M be the ideal $(x, y) \subset A$ be viewed as an A-module. Show that $M \otimes_{A} M$ is not torsion-free.

Solution. (a) By the fundamental theorem of finitely-generated modules for principal ideal domains, $M(\operatorname{and} N)$ is a direct sum of modules isomorphic to either A or A / I where $I=(f)$ is a nonzero principal ideal. The latter modules are not torsion-free since $f \cdot 1=0$ in $A /(f)$. Thus $M \cong A^{\oplus m}$ and $N \cong A^{\oplus n}$ are free A-modules of finite rank. We compute that $M \otimes_{A} N \cong A^{\oplus m n}$.
(b) Let $S=M \otimes_{A} M$. Consider the element $x \otimes y \in S$. We have

$$
x \cdot(x \otimes y)=x \otimes(x y)=(x y) \otimes x=x \cdot(y \otimes x)
$$

It follows that $x \cdot(x \otimes y-y \otimes x)=0$ in S. We claim that the element $(x \otimes y-y \otimes x) \in S$ is nonzero in S, proving that S is not torsion-free.

View S as a \mathbb{C}-vector space. It is the quotient of $V:=M \otimes_{\mathbb{C}} M$ by the subspace W spanned by vectors of the form $(a f) \otimes g-f \otimes(a g)$, where $f, g \in M$ and $a \in A$. (In fact, it suffices to take such vectors for $a=x$ or $a=y$.). Give V and W a \mathbb{Z}-grading by setting $\operatorname{deg}(x)=\operatorname{deg}(y)=1$, and $\operatorname{deg}(f \otimes g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for homogeneous polynomials $f, g \in M$. Then V is supported in degrees $2,3, \ldots$ while W is supported in degrees $3,4, \ldots$. It follows that the the degree 2 component of S is isomorphic to the degree 2 component of V, which has basis $\{x \otimes x, x \otimes y, y \otimes x, y \otimes y\}$. In particular, $x \otimes y-y \otimes x$ is nonzero in S.

