ALGEBRA 2 EXAM: JANUARY 2022 | Plea | ase wait | until dire | cted to | begin the | exam. I | Please | use tl | he indicat | ed p | age, an | d its re | verse | |---------|----------|------------|-----------|------------|----------|--------|--------|------------|------|---------|----------|-------| | side, f | or your | solution | to each | problem. | Extra | pages | are | attached | at t | he end | if you | need | | more | space; p | lease indi | cate if y | you have ι | used the | m. | | | | | | | | Please | write | vour | iden | tifica | tion | number | here: | |---------|--------|------|------|--------|-------|---------|--------| | I ICabe | WILLUC | vou | 1401 | umca | UICII | HUHHOUL | TICLU. | | Have fun! | | | | |-----------|--|--|--| **Problem 1.** Let p be a prime number. Let G be a group of order p^k for $k \ge 1$ and let H be the subgroup of G generated by elements of the form g^p . Show that $H \ne G$. **Problem 2.** Let K/F be a field extension of degree n. Show that there is a subgroup of $\mathrm{GL}_n(F)$ which is isomorphic to K^{\times} . **Problem 3.** Let F be a field. $\operatorname{GL}_n(F)$ is the group of invertible $n \times n$ matrices with entries in F and $\operatorname{SL}_n(F)$ is the subgroup of matrices of determinant 1. Prove or disprove: There is an action of F^{\times} on $\operatorname{SL}_n(F)$ such that $\operatorname{GL}_n(F) \cong \operatorname{SL}_n(F) \rtimes F^{\times}$. **Problem 4.** Let K/\mathbb{Q} be a Galois extension with degree 9 and at least 2 distinct subfields $\mathbb{Q} \subsetneq L_1, L_2 \subsetneq K$. What is $Gal(K/\mathbb{Q})$? **Problem 5.** Let ζ be a primitive 7-th root of unity. Give an explicit element γ of $\mathbb{Q}(\zeta)$ such that γ is not in \mathbb{Q} but γ^2 is in \mathbb{Q} . You may assume that the cyclotomic polynomial $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ is irreducible. This page left empty for additional work. This page left empty for additional work.