ALGEBRA 2 EXAM: JANUARY 2022

Plea	ase wait	until dire	cted to	begin the	exam. I	Please	use tl	he indicat	ed p	age, an	d its re	verse
side, f	or your	solution	to each	problem.	Extra	pages	are	attached	at t	he end	if you	need
more	space; p	lease indi	cate if y	you have ι	used the	m.						

Please	write	vour	iden	tifica	tion	number	here:
I ICabe	WILLUC	vou	1401	umca	UICII	HUHHOUL	TICLU.

Have fun!			

Problem 1. Let p be a prime number. Let G be a group of order p^k for $k \ge 1$ and let H be the subgroup of G generated by elements of the form g^p . Show that $H \ne G$.

Problem 2. Let K/F be a field extension of degree n. Show that there is a subgroup of $\mathrm{GL}_n(F)$ which is isomorphic to K^{\times} .

Problem 3. Let F be a field. $\operatorname{GL}_n(F)$ is the group of invertible $n \times n$ matrices with entries in F and $\operatorname{SL}_n(F)$ is the subgroup of matrices of determinant 1. Prove or disprove: There is an action of F^{\times} on $\operatorname{SL}_n(F)$ such that $\operatorname{GL}_n(F) \cong \operatorname{SL}_n(F) \rtimes F^{\times}$.

Problem 4. Let K/\mathbb{Q} be a Galois extension with degree 9 and at least 2 distinct subfields $\mathbb{Q} \subsetneq L_1, L_2 \subsetneq K$. What is $Gal(K/\mathbb{Q})$?

Problem 5. Let ζ be a primitive 7-th root of unity. Give an explicit element γ of $\mathbb{Q}(\zeta)$ such that γ is not in \mathbb{Q} but γ^2 is in \mathbb{Q} . You may assume that the cyclotomic polynomial $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ is irreducible.

This page left empty for additional work.

This page left empty for additional work.