Problem 1. Let G be a finite group of order N and let X and Y be two sets on which G acts transitively. Suppose that $\operatorname{GCD}(|X|,|Y|)=1$. Let G act on $X \times Y$ by $g \cdot(x, y)=(g \cdot x, g \cdot y)$. Show that the action of G on $X \times Y$ is transitive.
Solution. Let $Z \subset X \times Y$ be the orbit of some element. From the projection map $p: Z \rightarrow X$, we see that $|X|$ divides $|Z|$. (Precisely, suppose $z \in Z$ has stabilizer G_{z}. Since Z is transitive, we have $Z \cong G / G_{z}$. Let $x=p(z)$. Since p is G-equivariant, we have $G_{z} \subset G_{x}$. Since X is transitive, we have $X \cong G / G_{x}$. Thus $|Z| /|X|=\left|G_{x}\right| /\left|G_{z}\right|$, which is an integer by Lagrange's theorem.) Similarly, $|Y|$ divides $|Z|$. Since $|X|$ and $|Y|$ are coprime, it follows that $|X| \cdot|Y|$ divides $|Z|$, and so $Z=X \times Y$. Thus $X \times Y$ carries a transitive action.

Problem 2. Let G be a finite group with $|G| \equiv 2 \bmod 4$. Let s and t be two nonidentity elements of G with $s^{2}=t^{2}=1$. Show that s and t are conjugate within G.

Solution. Since 2 divides $|G|$ but 4 does not, it follows that a 2-Sylow subgroup of G has order 2. Thus $\{1, s\}$ and $\{1, t\}$ are 2-Sylow subgroups. By the second Sylow theorem, they are conjugate, i.e., there is $g \in G$ such that $\{1, s\}=g\{1, t\} g^{-1}$. Since $g t g^{-1}$ is not the identity, it must be s, and so s and t are conjugate.

Problem 3. Let K be the field of rational functions $\mathbb{C}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$. Let F be the subfield of K consisting of functions symmetric under the permutations $\left(x_{0}, x_{1}, x_{2}, x_{3} x_{4}\right) \mapsto$ $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{0}\right)$ and $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{0}, x_{4}, x_{3}, x_{2}, x_{1}\right)$. How many fields L are there with $F \subseteq L \subseteq K$? (Prove your answer to be correct.)

Solution. Let σ be the automorphism of K that fixes \mathbb{C} and acts on the variables by $\sigma\left(x_{i}\right)=x_{i+1}$ (with indices in $\mathbb{Z} / 5$). Let τ be the automorphism that fixes \mathbb{C} and acts on the variables by $\tau\left(x_{i}\right)=x_{-i}$. The group $G \subset \operatorname{Aut}(K)$ generated by σ and τ is isomorphic to the dihedral group D_{5} of order 10. As F is the fixed field of G, we see that K / F is a Galois extension with group D_{5}. Hence, the number of intermediate fields is the number of subgroups of D_{5}. There is one subgroup of order one, five of order two, one of order five, and one of order ten. Thus D_{5} has 8 subgroups, and so there are 8 intermediate fields.

Problem 4. Let K be a field, let $f(x)$ be a separable polynomial of degree $n \geq 3$ with coefficients in K and let L be a splitting field for $f(x)$ over K, in which $f(x)$ factors as $\left(x-\theta_{1}\right)\left(x-\theta_{2}\right) \cdots\left(x-\theta_{n}\right)$. Suppose that $\operatorname{Gal}(L / K)$ is the alternating group A_{n}. Show that θ_{n} lies in the field $K\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-2}\right)$, but that θ_{n} does not lie in $K\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-3}\right)$.

Solution. The Galois group of $L / K\left(\theta_{1}, \ldots, \theta_{n-2}\right)$ consists of those permutations in A_{n} that fix $1, \ldots, n-2$. The only such permutation is the identity, and so the Galois group is trivial. By Galois theory, $K\left(\theta_{1}, \ldots, \theta_{n-2}\right)=L$, and thus contains θ_{n}.

The 3 -cycle $(n-2 n-1 n)$ is an element of $\operatorname{Gal}(L / K)$ that fixes the field $K\left(\theta_{1}, \ldots, \theta_{n-3}\right)$. Since it does not fix θ_{n}, it follows that θ_{n} does not belong to this field.

Problem 5. Let $p \geq 5$ be prime. We consider the following four subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ where, in each case, x ranges over \mathbb{F}_{p}^{\times}and y ranges over \mathbb{F}_{p} :

$$
G_{1,2}=\left\{\left[\begin{array}{ll}
x & y \\
0 & x^{2}
\end{array}\right]\right\} \quad G_{1,3}=\left\{\left[\begin{array}{cc}
x & y \\
0 & x^{3}
\end{array}\right]\right\} \quad G_{2,3}=\left\{\left[\begin{array}{cc}
x^{2} & y \\
0 & x^{3}
\end{array}\right]\right\} \quad G_{2,1}=\left\{\left[\begin{array}{cc}
x^{2} & y \\
0 & x
\end{array}\right]\right\} .
$$

Which of these groups are isomorphic to each other? When you claim that groups are isomorphic, prove them to be so; when you claim that groups are not isomorphic, prove them not to be so.

Solution. For coprime integers n and m, put

$$
G_{n, m}=\left[\begin{array}{cc}
x^{n} & y \\
0 & x^{m}
\end{array}\right] \quad T_{n, m}=\left[\begin{array}{cc}
x^{n} & 0 \\
0 & x^{m}
\end{array}\right] \quad U_{n, m}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],
$$

where x varies over \mathbb{F}_{p}^{\times}and y varies over \mathbb{F}_{p}. Both $T_{n, m}$ and $U_{n, m}$ are subgroups of $G_{n, m}$, with $U_{n, m}$ normal. Moreover, $G_{n, m}=T_{n, m} U_{n, m}$ and $T_{n, m} \cap U_{n, m}=1$. Thus $G_{n, m}$ is the semi-direct product $T_{n, m} \ltimes U_{n, m}$.

Now, the map

$$
\mathbb{F}_{p}^{\times} \rightarrow T_{n, m} \quad x \mapsto\left[\begin{array}{cc}
x^{n} & 0 \\
0 & x^{m}
\end{array}\right]
$$

is an isomorphism; indeed, it is surjective by definition, and has trivial kernel since n and m are coprime. Of course, the map

$$
\mathbb{F}_{p} \rightarrow U_{n, m} \quad y \mapsto\left[\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right]
$$

is also an isomorphism. We have

$$
\left[\begin{array}{cc}
x^{n} & 0 \\
0 & x^{m}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
x^{n} & 0 \\
0 & x^{m}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & x^{n-m} y \\
0 & 1
\end{array}\right] .
$$

We thus see that $G_{n, m}$ is isomorphic to the semi-direct product $\mathbb{F}_{p}^{\times} \ltimes_{n-m} \mathbb{F}_{p}$, where the subscript indicates that \mathbb{F}_{p}^{\times}acts on \mathbb{F}_{p} by $x \bullet y=x^{n-m} y$.

In particular, the isomorphism class of $G_{n, m}$ only depends on $n-m$. Thus $G_{1,2}$ and $G_{2,3}$ are isomorphic.

Now, the matrix

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

belongs to $G_{1,3}$, and is central of order two. In terms of the semi-direct product computation, this corresponds to the fact that $-1 \in T_{1,3}$ acts trivially on $U_{1,3}$, since $(-1)^{3-1}=1$. One easily sees that the other $G_{n, m}$'s have trivial center, and so $G_{1,3}$ is not isomorphic to them. (Here's how to see trivial center. Suppose x were a central element of $G_{n, m}$. Then x would conjugate $U_{n, m}$ trivially. This conjugation action only depends on the image of x in $T_{n, m}=G_{n, m} / U_{n, m}$. For the relevant $\left(n, m\right.$)'s other than $(1,3)$, the action of $T_{n, m}$ on $U_{n, m}$ is faithful, by the above computation. Thus we see that x maps to 1 in $T_{n, m}$, meaning $x \in U_{n, m}$. But non-identity elements of $U_{n, m}$ are clearly not central since $T_{n, m}$ acts non-trivially on them.)

Finally we must decide if $G_{1,2}$ and $G_{2,1}$ are isomorphic. They are. This follows from the semi-direct product description: the map

$$
\mathbb{F}_{p}^{\times} \ltimes_{1-2} \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}^{\times} \ltimes_{2-1} \mathbb{F}_{p}, \quad(x, y) \mapsto\left(x^{-1}, y\right)
$$

is an isomorphism. In terms of matrices, this is the isomorphism

$$
G_{1,2} \rightarrow G_{2,1} \quad\left[\begin{array}{cc}
x & y \\
0 & x^{2}
\end{array}\right] \mapsto\left[\begin{array}{cc}
x^{-2} & x^{-3} y \\
0 & x^{-1}
\end{array}\right] .
$$

Note that (x, y) in the semi-direct product description of $G_{n, m}$ corresponds to the matrix

$$
\left[\begin{array}{cc}
x^{n} & 0 \\
0 & x^{m}
\end{array}\right]\left[\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
x^{n} & x^{n} y \\
0 & x^{m}
\end{array}\right]
$$

