
Problem 1. Let G be a simple group. Let H be a normal subgroup of G × G. Show that
H is isomorphic to either the trivial group, to G or to G×G.

Solution Let K = H ∩ (G×{1}), since H is normal in G×G we know that K is normal
in G, and is thus either {e} or G. Let L be the projection of H onto the second factor; the
image of a normal subgroup under a surjective homomorphism is normal, so L is normal in
G, and thus L = {e} or G. So we have a short exact sequence 1→ K → H → L→ 1 where
each of K and L are either {e} or G. If K = L = {e} then H ∼= {e}; if one of K and L is
trivial and the other is G then H ∼= G, and if K = L = G then H = G×G.

Problem 2. Let p be a prime. Let G be a group such that |G| is divisible by p but not by
p2. Show that G contains at most p− 1 conjugacy classes of elements of order p.

Solution Let σ be an element of order p in G. We will show that any other element τ of
order p is conjugate to one of σ, σ2, . . . , σp−1.

Since p divides |G| and p2 does not, the cyclic group 〈σ〉 is a p-Sylow subgroup of G, as is
〈τ〉. So 〈σ〉 is conjugate to 〈τ〉. This means that τ must be conjugate to some generator of
〈σ〉, as claimed above.

Problem 3. Let p be a prime. Let G be a subgroup of GL2(Z/pZ) whose order is prime to
p. Let π : GL2(Z/p2Z)→ GL2(Z/pZ) be the reduction modulo p map. Show that there is a
group homomorphism σ : G→ GL2(Z/p2Z) such that π(σ(g)) = g for all g ∈ G.

Solution Let π : GL2(Z/p2Z) → GL2(Z/pZ) be the reduction map modulo p. Let H =
π−1(G) and let K be the kernel of π. Then we have a short exact sequence 1 → K →
H

π−→ G→ 1. Now, |K| = p4 and |H| is relatively prime to p. So, by the Schur-Zassenhaus
theorem, this sequence is semidirect. The right splitting σ : G → H ⊂ GL2(Z/p2Z) is the
required map.

Problem 4. Let ζ be a primitive 25th root of 1 over Q. Show that the equation X5− 5 has
no solutions over Q[ζ].

Solution We first note that Q(ζ) is Galois over Q with Galois group (Z/25Z)×. (Techni-
cally, this solution will only need that the Galois group is a subgroup of (Z/25Z)×, which is
somewhat easier to show.)

Let K be the splitting field of x5 − 5 over Q. By a standard computation, Gal(K/Q) ∼=
Z/5Z o (Z/5Z)×.

Suppose for the sake of contradiction that x5 − 5 has a root α in Q(ζ). Then αζ5, αζ10,
αζ15, αζ20 are also be roots of x5 − 5 in Q(ζ), so x5 − 5 splits in Q(ζ) and thus K is a
subfield of Q(ζ). So Z/5Z o (Z/5Z)× must be a quotient group of (Z/25Z)× (or, if we only
know that the Galois group is a subgroup of (Z/25Z)×, must be a quotient of this subgroup).
Since (Z/25Z)× (and its subgroups) are abelian, it cannot surject onto the non-abelian group
Z/5Z o (Z/5Z)×, a contradiction.

Problem 5. Let p be a prime, let k be a field in which p 6= 0 and let f(x) be the polynomial
xp−1
x−1

= xp−1 + xp−2 + · · · + x2 + x + 1. Let g1(x)g2(x) · · · gr(x) be the factorization of f(x)
into irreducibles in k[x]. Show that all the polynomials gi(x) have the same degree.

Solution Let ζ, ζ2, ζ3, . . . , ζp−1 be the roots of f(x) in the algebraic closure of k. The
Galois group of k(ζ)/k is a subgroup of (Z/pZ)×, with a ∈ (Z/pZ)× acting by ζ i 7→ ζai; let
H be this subgroup of (Z/pZ)×. Then (x − ζ i) and (x − ζj) divide the same factor gk(x)



if and only if i and j are in the same Gal(k(ζ)/k) orbit or, equivalent, if i and j are in the
same coset of H. So each polynomial gk has degree |H|.


