Algebra II Exam: May 2022

Plea	se wait	until dire	ected to	begin the	exam. I	Please	use tl	he indica	ted p	age, an	ıd its re	everse
side, fe	or your	solution	to each	n problem.	. Extra	pages	are	attached	at t	he end	if you	need
more space; please indicate if you have used them.												

Please write your **identification number** here:

Have fun!

Problem 1. Let G be a simple group. Let H be a normal subgroup of $G \times G$. Show that H is isomorphic to either the trivial group, to G or to $G \times G$.

Problem 2. Let p be a prime. Let G be a group such that |G| is divisible by p but not by p^2 . Show that G contains at most p-1 conjugacy classes of elements of order p.

Problem 3. Let p be a prime. Let G be a subgroup of $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ whose order is prime to p. Let $\pi:\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})\to\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ be the reduction modulo p map. Show that there is a group homomorphism $\sigma:G\to\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ such that $\pi(\sigma(g))=g$ for all $g\in G$.

Problem 4. Let ζ be a primitive 25th root of 1 over \mathbb{Q} . Show that the equation X^5-5 has no solutions over $\mathbb{Q}[\zeta]$.

Problem 5. Let p be a prime, let k be a field in which $p \neq 0$ and let f(x) be the polynomial $\frac{x^p-1}{x-1} = x^{p-1} + x^{p-2} + \cdots + x^2 + x + 1$. Let $g_1(x)g_2(x)\cdots g_r(x)$ be the factorization of f(x) into irreducibles in k[x]. Show that all the polynomials $g_i(x)$ have the same degree.