
Problem 1. Let A be an n × n integer matrix and let AT be its transpose. Let X and Y
be the abelian groups X = Zn/AZn and Y = Zn/ATZn. Show that X and Y are isomorphic
as abelian groups.

Solution: Write A in Smith normal form as A = UDV where

D =

 d1
d2

...
dn


with U and V invertible. So AT = V TDTUT = V TDUT since D is diagonal. Then X ∼=
Zn/DZn ∼= Zn/DTZn ∼= Y .

Problem 2. Let k be a field. For each of the following rings, determine if it is a PID or a
UFD or neither or both.

(1) k[x, y].
(2) k[x, y]/(xy − 1)k[x, y].
(3) k[x, y]/(y2 − x3)k[x, y].

Solution

(1) k[x, y] This ring is a UFD, since k[x] is a UFD and, if A is a UFD, then A[y] is as
well. It is not a PID, since the ideal 〈x, y〉 is not principle.

(2) k[x, y]/(xy−1) This ring is a PID and hence a UFD. Note that this ring is isomorphic
to the Laurent polynomial ring k[x, x−1]. Let I be a nonzero ideal of k[x, x−1] and
let J = k[x] ∩ I. Since k[x] is a PID, we have J = f(x)k[x] for some polynomial f ,
and therefore f(x)k[x, x−1] ⊆ I. We claim that, in fact, f(x)k[x, x−1] ⊆ I. To see
this, let g(x) ∈ I. Then there is some positive integer N such that xNg(x) ∈ k[x],
so f(x) divides xNg(x) in k[x]. Then f(x) also divides g(x) in k[x, x−1]. So we have
shown that f(x)k[x, x−1] ⊆ I and I is principal.

(3) This ring is not a UFD, and therefore not a PID. We claim that x and y are non-
associate irreducibles, so the equation y2 = x3 is a non-unique factorization. To see
that x and y are irreducible, note that this ring is isomorphic to the subring k[t2, t3]
of k[t].

Problem 3. Let T be an (n×n)-matrix over an algebraically closed field k of characteristic
p. Assume that all eigenvalues of T lie in Fp ⊂ k. Is the matrix T p − T nilpotent? If yes,
give a proof; if not, give an example.

Solution: Yes, T p − T is nilpotent. Let λ1, λ2, . . . , λn be the generalized eigenvalues
of T . Note that each generalized eigenvalue of T is an eigenvalue (possibly with different
multiplicity), so each λj lies in Fp, so λpj−λj = 0 for each j. Then the generalized eigenvalues
of T p−T are all λpj −λj = 0. So the characteristic polynomial of T p−T is xp and so T p−T
is nilpotent.

Problem 4. Calculate the number of subgroups L ⊂ Z3 with Z3/L being isomorphic ab-
stractly to Z/5Z× Z/5Z.

Solution: The answer is 52 + 5 + 1 = 31. There are many ways to derive this; here is one.
If Z3/L ∼= (Z/5Z)2, then L ⊃ (5Z)3. So L is determined by its image in the quotient

Z3/(5Z)3 ∼= (Z/5Z)3. The image of L in (Z/5Z)3 must be a one dimensional subspace of the
vector space F3

5. Such a subspace is generated by some (x, y, z) ∈ F3
5 with x, y and z not all



0. The number of ways to choose (x, y, z) is 53 − 1, but resclaing this vector gives the same

subspace of F3
5, so 53−1

5−1
= 31.

Problem 5. Let R be a PID which is free as rank n as a Z-module and let π be a prime
element of R. Show that |R/πR| is of the form pk for some prime integer p and some
1 ≤ k ≤ n. (Remark: Note that units, and the zero element, are not considered prime.)

Solution: We first check that πR ∩ Z is not (0). Indeed, since R is of finite rank as a
Z-module, we must have a relation πn = an−1π

n−1 + · · ·+ a1π + a0 for a0, a1, . . . , an−1 ∈ Z.
Since π 6= 0 and R is a domain, we can assume that a0 6= 0. Then a0 ∈ πR. So πR ∩ Z is
not the zero ideal.

Since Z is a PID, πR∩Z must be gZ for some g ∈ Z. We claim that g is prime. If not, let
g = ab be a nontrivial factorization, then ab is 0 in R/πR and neither a nor b is 0 in R/πR,
a contradiction. So R ∩ Z = pZ for some prime p. Then R/πR is an Fp vector space, so
|R/πR| = pk for some k.


