ALGEBRA II: SOLUTIONS

Problem 1. Let k be a positive integer. The group $\operatorname{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$ consists of matrices with entries in the ring $\mathbb{Z}/2^k\mathbb{Z}$ whose determinant is a unit of $\mathbb{Z}/2^k\mathbb{Z}$. Show that $\operatorname{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$ is a solvable group. You may use without proof that $\operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \cong S_3$ is solvable.

Solution. Let $G_k = \operatorname{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$. We show that G_k is solvable by induction on k. The base case k = 1 is given to us. Now let k > 1. We can take an element of G_k and reduce its entries modulo 2^{k-1} to obtain an element of G_{k-1} . This defines a group homomorphism $\pi_k: G_k \to G_{k-1}$. Since G_{k-1} is solvable by assumption, it is enough to show that $\operatorname{ker}(\pi_k)$ is solvable, as this will imply that G_k is solvable.

The kernel of π_k consists of all matrices in G_k that are congruent to the identity matrix modulo 2^{k-1} . Such matrices have the form $1 + 2^{k-1}A$ where A is some 2×2 matrix with entries in $\mathbb{Z}/2^k\mathbb{Z}$ and 1 is the identity matrix; in fact, every matrix of this form is invertible and thus belongs to ker(π_k), but this is not needed. We have

$$(1+2^{k-1}A)(1+2^{k-1}B) = 1+2^{k-1}(A+B)+2^{2k-2}AB \equiv 1+2^{k-1}(A+B) \pmod{2^k}.$$

Reversing the order gives a similar computation, and so we see that

$$(1+2^{k-1}A)(1+2^{k-1}B) \equiv (1+2^{k-1}B)(1+2^{k-1}A) \pmod{2^k}.$$

It follows that ker(π_k) is commutative, and in particular solvable.

Problem 2. Let G be a group with the following presentation:

$$G = \left\langle a, b \mid (a^2 b)^5 = 1, \ a^2 b a^{-1} b^{-2} \right\rangle$$

and let [G,G] be the commutator subgroup of G. Compute the order of the quotient G/[G,G].

Solution. Recall that G/[G, G] is called the abelianization of G and denoted G_{ab} . The abelianization of the free group $F = \langle a, b \rangle$ is \mathbb{Z}^2 ; let \overline{a} and \overline{b} be the images of a and b, which are generators of F_{ab} . The image of $(a^2b)^5$ in F_{ab} is $10\overline{a} + 5\overline{b}$, while the image of $a^2ba^{-1}b^{-2}$ is $\overline{a} - \overline{b}$. We thus have an isomorphism

$$G_{\rm ab} = (\mathbb{Z}\overline{a} \oplus \mathbb{Z}\overline{b})/(10\overline{a} + 5\overline{b}, \overline{a} - \overline{b}).$$

In other words, G_{ab} has presentation matrix

$$\begin{pmatrix} 10 & 1 \\ 5 & -1 \end{pmatrix}.$$

The cardinality of G_{ab} is the absolute value of the determinant of this matrix, i.e., 15.

Problem 3. Let L/F be a field extension and let K_1 and K_2 be two distinct subfields with $F \subset K_1, K_2 \subset L$ such that $L = K_1K_2$ and $[K_1 : F] = [K_2 : F] = 3$. Show that [L : F] is either 6 or 9, and give examples to show that both values can occur.

Date: August 2022.

Solution. Let x, y, z be an F-basis for K_2 . Since $L = K_1K_2$, we see that x, y, z is a K_1 -spanning set for L, so $[L:K_1] \leq 3$. Also, since $K_1 \neq K_2$, we have $L \neq K_1$, so $[L:K_1] \geq 1$. Thus, $[L:K_1]$ is 2 or 3 and $[L:F] = [L:K_1][K_1:F] = [L:K_1] \cdot 3$ is either 6 or 9.

To see that the value 6 can occur, take $F = \mathbb{Q}$, $K_1 = \mathbb{Q}(\sqrt[3]{2})$, $K_2 = \mathbb{Q}(\omega\sqrt[3]{2})$ and $L = \mathbb{Q}(\omega,\sqrt[3]{2})$, where ω is a primitive cube root of unity. To see that the value 9 can occur, take $F = \mathbb{Q}$, $K_1 = \mathbb{Q}(\sqrt[3]{2})$, $K_2 = \mathbb{Q}(\sqrt[3]{3})$ and $L = \mathbb{Q}(\sqrt[3]{2},\sqrt[3]{3})$.

Problem 4. Let *L* be the field $\mathbb{C}(x_1, x_2, x_3, x_4)$ of rational functions in four independent variables. Let $K \subset L$ be the subfield of S_4 -symmetric functions. Give an explicit element $\theta \in L$ such that $[K(\theta) : K] = 3$.

Solution. The extension L/K is a Galois extension with Galois group S_4 . So an extension $K(\theta)$ with $[K(\theta) : K] = 3$ corresponds to an index 3 subgroup of S_4 , in other words, a subgroup H of S_4 of order 8. The subgroups of S_4 of order 8 are the dihedral group $D := \langle (1234), (13) \rangle$ and its conjugates. So $[L^D : K] = 3$ for this group D. Since 3 is prime, if θ is any element of L^D not in K, then $L^D = K(\theta)$. Such a θ is $x_1x_3 + x_2x_4$.

Problem 5. Let G be a group of order 4n with n odd. Suppose that G contains (at least) two distinct cyclic groups of order 2n. Show that G is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/n\mathbb{Z})$.

Solution. Let $N_1 \neq N_2$ be two cyclic subgroups of order 2*n*. Observe the following:

- N_1 and N_2 are normal in G, since they have index 2.
- $G = N_1 N_2$; indeed, since N_2 is normal $N_1 N_2$ is the subgroup generated by N_1 and N_2 , and this is strictly larger than N_2 , and thus all of G since N_2 already has index 2.
- $Z = N_1 \cap N_2$ is cyclic of order n; indeed, it is a subgroup of N_1 , and therefore cyclic, and has index 2 in N_1 (since N_2 has index 2 in G), and thus has order n.

Now, Z is obviously central in each of N_1 and N_2 . By the second point above, it follows that Z is central in G.

Now, N_1 has a unique element n_1 of order 2, and the natural map $Z \times \langle n_1 \rangle \to N$ is an isomorphism (this is the Chinese remainder theorem); here $\langle n_1 \rangle \cong \mathbb{Z}/2\mathbb{Z}$ is the subgroup generated by n_1 . Since N_1 is normal, any $g \in G$ acts on N_1 by conjugation. This action fixes each element of Z (since these elements are central) and fixes n_1 (since it is the unique order 2 element of N_1), and therefore fixes every element of N_1 . We thus see that N_1 is central; similary for N_2 .

Since $G = N_1 N_2$, it follows that G is commutative. The exact sequence

$$1 \to Z \to N_1 \times N_2 \to G \to 1$$

now yields the stated result. (The first map above is $z \mapsto (z, z^{-1})$, and the second map is $(g_1, g_2) \mapsto g_1 g_2$.)