
ALGEBRA II: SOLUTIONS

Problem 1. Let k be a positive integer. The group GL2(Z/2kZ) consists of matrices with
entries in the ring Z/2kZ whose determinant is a unit of Z/2kZ. Show that GL2(Z/2kZ) is
a solvable group. You may use without proof that GL2(Z/2Z) ∼= S3 is solvable.

Solution. Let Gk = GL2(Z/2kZ). We show that Gk is solvable by induction on k. The
base case k = 1 is given to us. Now let k > 1. We can take an element of Gk and reduce
its entries modulo 2k−1 to obtain an element of Gk−1. This defines a group homomorphism
πk : Gk → Gk−1. Since Gk−1 is solvable by assumption, it is enough to show that ker(πk) is
solvable, as this will imply that Gk is solvable.

The kernel of πk consists of all matrices in Gk that are congruent to the identity matrix
modulo 2k−1. Such matrices have the form 1 + 2k−1A where A is some 2 × 2 matrix with
entries in Z/2kZ and 1 is the identity matrix; in fact, every matrix of this form is invertible
and thus belongs to ker(πk), but this is not needed. We have

(1 + 2k−1A)(1 + 2k−1B) = 1 + 2k−1(A+B) + 22k−2AB ≡ 1 + 2k−1(A+B) (mod 2k).

Reversing the order gives a similar computation, and so we see that

(1 + 2k−1A)(1 + 2k−1B) ≡ (1 + 2k−1B)(1 + 2k−1A) (mod 2k).

It follows that ker(πk) is commutative, and in particular solvable.

Problem 2. Let G be a group with the following presentation:

G =
〈
a, b

∣∣ (a2b)5 = 1, a2ba−1b−2
〉

and let [G,G] be the commutator subgroup of G. Compute the order of the quotient
G/[G,G].

Solution. Recall that G/[G,G] is called the abelianization of G and denoted Gab. The
abelianization of the free group F = ⟨a, b⟩ is Z2; let a and b be the images of a and b, which
are generators of Fab. The image of (a2b)5 in Fab is 10a + 5b, while the image of a2ba−1b−2

is a− b. We thus have an isomorphism

Gab = (Za⊕ Zb)/(10a+ 5b, a− b).

In other words, Gab has presentation matrix(
10 1
5 −1

)
.

The cardinality of Gab is the absolute value of the determinant of this matrix, i.e., 15.

Problem 3. Let L/F be a field extension and let K1 and K2 be two distinct subfields with
F ⊂ K1, K2 ⊂ L such that L = K1K2 and [K1 : F ] = [K2 : F ] = 3. Show that [L : F ] is
either 6 or 9, and give examples to show that both values can occur.
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Solution. Let x, y, z be an F -basis for K2. Since L = K1K2, we see that x, y, z is a K1-
spanning set for L, so [L : K1] ≤ 3. Also, since K1 ̸= K2, we have L ̸= K1, so [L : K1] ≥ 1.
Thus, [L : K1] is 2 or 3 and [L : F ] = [L : K1][K1 : F ] = [L : K1] · 3 is either 6 or 9.

To see that the value 6 can occur, take F = Q, K1 = Q( 3
√
2), K2 = Q(ω 3

√
2) and

L = Q(ω, 3
√
2), where ω is a primitive cube root of unity. To see that the value 9 can occur,

take F = Q, K1 = Q( 3
√
2), K2 = Q( 3

√
3) and L = Q( 3

√
2, 3
√
3).

Problem 4. Let L be the field C(x1, x2, x3, x4) of rational functions in four independent
variables. Let K ⊂ L be the subfield of S4-symmetric functions. Give an explicit element
θ ∈ L such that [K(θ) : K] = 3.

Solution. The extension L/K is a Galois extension with Galois group S4. So an extension
K(θ) with [K(θ) : K] = 3 corresponds to an index 3 subgroup of S4, in other words,
a subgroup H of S4 of order 8. The subgroups of S4 of order 8 are the dihedral group
D := ⟨(1234), (13)⟩ and its conjugates. So [LD : K] = 3 for this group D. Since 3 is prime,
if θ is any element of LD not in K, then LD = K(θ). Such a θ is x1x3 + x2x4.

Problem 5. Let G be a group of order 4n with n odd. Suppose that G contains (at least)
two distinct cyclic groups of order 2n. Show that G is isomorphic to (Z/2Z)2 × (Z/nZ).

Solution. Let N1 ̸= N2 be two cyclic subgroups of order 2n. Observe the following:

• N1 and N2 are normal in G, since they have index 2.
• G = N1N2; indeed, since N2 is normal N1N2 is the subgroup generated by N1 and
N2, and this is strictly larger than N2, and thus all of G since N2 already has index
2.

• Z = N1 ∩N2 is cyclic of order n; indeed, it is a subgroup of N1, and therefore cyclic,
and has index 2 in N1 (since N2 has index 2 in G), and thus has order n.

Now, Z is obviously central in each of N1 and N2. By the second point above, it follows that
Z is central in G.
Now, N1 has a unique element n1 of order 2, and the natural map Z × ⟨n1⟩ → N is an

isomorphism (this is the Chinese remainder theorem); here ⟨n1⟩ ∼= Z/2Z is the subgroup
generated by n1. Since N1 is normal, any g ∈ G acts on N1 by conjugation. This action
fixes each element of Z (since these elements are central) and fixes n1 (since it is the unique
order 2 element of N1), and therefore fixes every element of N1. We thus see that N1 is
central; similary for N2.
Since G = N1N2, it follows that G is commutative. The exact sequence

1 → Z → N1 ×N2 → G → 1

now yields the stated result. (The first map above is z 7→ (z, z−1), and the second map is
(g1, g2) 7→ g1g2.)


