
ALGEBRA II

We use the following standard notation: Z is the ring of integers, Q is the field of
rational numbers, R is the field of real numbers, C is the field of complex numbers,
and Fq is the finite field with q elements (where q = pe for some prime p and e ≥ 1).

(1) Let K be a subfield of C such that K is a Galois extension of Q with [K : Q]
odd. Show that K ⊂ R.

Solution: Let σ be complex conjugation. Then σ2 = Id, so σ must map to
an element of Gal(K/Q) whose square is the identity. But, since |Gal(K/Q)|
is odd, the only such element is the identity. So σ acts trivially on K, and
we deduce that K ⊂ R.

(2) Let p be an odd prime number. Form the semidirect product G = Fp o F∗
p

for the standard (scalar multiplication) action of F∗
p on Fp. Let ` be a prime.

Calculate the cardinality of the set of all group homomorphisms G to the
cyclic group Z/`Z in the following cases:

(a) ` is a prime number different from p.

(b) ` = p.

Solution:

(a) We first consider the case that ` 6= p. In this case, Hom(Fp,Z/`Z) = 0,
so any homomorphism G→ Z/`Z must vanish on the normal subgroup
Fp, and hence must factor through the quotient F×

p . We have shown that
Hom(G,Z/`Z) ∼= Hom(F×

p ,Z/`Z). Now, F×
p is the cyclic group of order

p− 1, so Hom(F×
p ,Z/`Z) is Z/`Z if ` divides p− 1, and trivial if ` does

not divide p− 1.

(b) Now, we consider Hom(G,Z/pZ). We will show that this is trivial (using
that p is odd).

Since Z/pZ is abelian, any homomorphism from G to Z/pZ must vanish
on the commutator subgroup of G. The commutator of (a,−1) and
(0,−1) ∈ Fp o F∗

p is (2a, 1) so, if p > 2, every element of Fp o {1} is
a commutator. Thus, any homomorphism from G to Z/pZ must factor
through the quotient F×

p . But the orders of F×
p and Z/pZ are relatively
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prime, so we deduce that Hom(G,Z/pZ) is trivial. (The problem didn’t
ask for this but: If p = 2, then G ∼= Z/2Z, so Hom(G,Z/2Z) has two
elements.)

(3) Let p be a prime number, and let k = Fp(x). For f(x) ∈ k, let Kf =
k[y]/(yp − f(x)). Show that the ring Kf is a field exactly when f(x) is not a
p-th power.

Solution: We know that k[y]/g(y)k[y] is a field if and only if g(y) is
irreducible in the polynomial ring k[y]. If f(x) = h(x)p then yp − f(x) =
(y−h(x))p and is hence not irreducible. We will now show that, on the other
hand, if yp − f(x) is reducible, then f(x) is a p-th power. Indeed, in the
algebraic closure of k, the polynomial yp − f factors as (y − f 1/p)p. So any
nontrivial factor of yp − f in k[y] would have to be of the form (y − f 1/p)a

for 1 ≤ a ≤ p − 1. But then examining the coefficient of ya−1, we see that
−af 1/p is in k, so f 1/p is in k, as desired.

(4) Fix a prime number p. Describe a p-Sylow subgroup in each of the following
groups:

(a) GL2(Z/pZ)

(b) GL2(Z/p2Z)

Here we use the following notation: for any ring R, the group GL2(R) is the
group (2× 2) invertible matrices over R (with group operation being matrix
multiplication).

Solution:

(a) As is well known, |GL2(Z/pZ)| = (p2 − 1)(p2 − p), so it is divisible by p
and not p2. Thus, a p-Sylow subgroup is any subgroup of size p, such as
the group of matrices of the form [ 1 ∗

0 1 ].

(b) We first compute the order of GL2(Z/p2Z). We have a short exact se-
quence 1 → Γ → GL2(Z/p2Z) → GL2(Z/pZ) → 1, where Γ is matrices
in GL2(Z/p2Z) whose reduction modulo p is the identity matrix. Note
that any element in Z/p2Z which is 1 mod p is a unit, so any matrix
with entries in Z/p2Z which is Id mod p is invertible, so Γ is simply all
matrices with entries in Z/p2Z which are Id mod p. There are p4 of
these, so |GL2(Z/p2Z)| = p4(p2 − 1)(p2 − p), and a p-Sylow subgroup of
GL2(Z/p2Z) is a group with p5 elements. The easiest example is to take
a preimage, in GL2(Z/p2Z) of a Sylow subgroup of GL2(Z/pZ). Con-
cretely, we get the group of matrices with entries in Z/p2Z of the form
[ a b
c d ] with a ≡ d ≡ 1 mod p and c ≡ 0 mod p.



(5) Let L/K be an algebraic extension of fields of characteristic 0. Assume
that for every α ∈ L, the extension K(α)/K has degree ≤ 2. Show that
[L : K] ≤ 2.

Solution: Indeed, suppose for the sake of contradiction that [L : K] > 2.
Then we can find α in L but not in K, so [K(α) : K] = 2, and we can
then find β in L but not in K(α), so [K(α, β) : K] > 2. But then, using
the primitive element theorem, we can find γ in K(α, β) such that K(γ) =
K(α, β), contradicting that we are supposed to have [K(γ) : K] ≤ 2 for all γ
in L.


