ALGEBRA II

We use the following standard notation: \mathbb{Z} is the ring of integers, \mathbb{Q} is the field of rational numbers, \mathbb{R} is the field of real numbers, \mathbb{C} is the field of complex numbers, and \mathbb{F}_q is the finite field with q elements (where $q = p^e$ for some prime p and $e \geq 1$).

(1) Let K be a subfield of \mathbb{C} such that K is a Galois extension of \mathbb{Q} with $[K : \mathbb{Q}]$ odd. Show that $K \subset \mathbb{R}$.

Solution: Let σ be complex conjugation. Then $\sigma^2 = \text{Id}$, so σ must map to an element of $\text{Gal}(K/\mathbb{Q})$ whose square is the identity. But, since $|\text{Gal}(K/\mathbb{Q})|$ is odd, the only such element is the identity. So σ acts trivially on K, and we deduce that $K \subset \mathbb{R}$.

- (2) Let p be an odd prime number. Form the semidirect product $G = \mathbb{F}_p \rtimes \mathbb{F}_p^*$ for the standard (scalar multiplication) action of \mathbb{F}_p^* on \mathbb{F}_p . Let ℓ be a prime. Calculate the cardinality of the set of all group homomorphisms G to the cyclic group $\mathbb{Z}/\ell\mathbb{Z}$ in the following cases:
 - (a) ℓ is a prime number different from p.
 - (b) $\ell = p$.

Solution:

- (a) We first consider the case that $\ell \neq p$. In this case, $\operatorname{Hom}(\mathbb{F}_p, \mathbb{Z}/\ell\mathbb{Z}) = 0$, so any homomorphism $G \to \mathbb{Z}/\ell\mathbb{Z}$ must vanish on the normal subgroup \mathbb{F}_p , and hence must factor through the quotient \mathbb{F}_p^{\times} . We have shown that $\operatorname{Hom}(G, \mathbb{Z}/\ell\mathbb{Z}) \cong \operatorname{Hom}(\mathbb{F}_p^{\times}, \mathbb{Z}/\ell\mathbb{Z})$. Now, \mathbb{F}_p^{\times} is the cyclic group of order p-1, so $\operatorname{Hom}(\mathbb{F}_p^{\times}, \mathbb{Z}/\ell\mathbb{Z})$ is $\mathbb{Z}/\ell\mathbb{Z}$ if ℓ divides p-1, and trivial if ℓ does not divide p-1.
- (b) Now, we consider Hom $(G, \mathbb{Z}/p\mathbb{Z})$. We will show that this is trivial (using that p is odd).

Since $\mathbb{Z}/p\mathbb{Z}$ is abelian, any homomorphism from G to $\mathbb{Z}/p\mathbb{Z}$ must vanish on the commutator subgroup of G. The commutator of (a, -1) and $(0, -1) \in \mathbb{F}_p \rtimes \mathbb{F}_p^*$ is (2a, 1) so, if p > 2, every element of $\mathbb{F}_p \rtimes \{1\}$ is a commutator. Thus, any homomorphism from G to $\mathbb{Z}/p\mathbb{Z}$ must factor through the quotient \mathbb{F}_p^{\times} . But the orders of \mathbb{F}_p^{\times} and $\mathbb{Z}/p\mathbb{Z}$ are relatively

Date: Aug 2021.

prime, so we deduce that $\operatorname{Hom}(G, \mathbb{Z}/p\mathbb{Z})$ is trivial. (The problem didn't ask for this but: If p = 2, then $G \cong \mathbb{Z}/2\mathbb{Z}$, so $\operatorname{Hom}(G, \mathbb{Z}/2\mathbb{Z})$ has two elements.)

(3) Let p be a prime number, and let $k = \mathbb{F}_p(x)$. For $f(x) \in k$, let $K_f = k[y]/(y^p - f(x))$. Show that the ring K_f is a field exactly when f(x) is not a p-th power.

Solution: We know that k[y]/g(y)k[y] is a field if and only if g(y) is irreducible in the polynomial ring k[y]. If $f(x) = h(x)^p$ then $y^p - f(x) = (y - h(x))^p$ and is hence not irreducible. We will now show that, on the other hand, if $y^p - f(x)$ is reducible, then f(x) is a *p*-th power. Indeed, in the algebraic closure of k, the polynomial $y^p - f$ factors as $(y - f^{1/p})^p$. So any nontrivial factor of $y^p - f$ in k[y] would have to be of the form $(y - f^{1/p})^a$ for $1 \le a \le p - 1$. But then examining the coefficient of y^{a-1} , we see that $-af^{1/p}$ is in k, so $f^{1/p}$ is in k, as desired.

- (4) Fix a prime number *p*. Describe a *p*-Sylow subgroup in each of the following groups:
 - (a) $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$
 - (b) $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$

Here we use the following notation: for any ring R, the group $GL_2(R)$ is the group (2×2) invertible matrices over R (with group operation being matrix multiplication).

Solution:

- (a) As is well known, $|\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})| = (p^2 1)(p^2 p)$, so it is divisible by p and not p^2 . Thus, a p-Sylow subgroup is any subgroup of size p, such as the group of matrices of the form $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$.
- (b) We first compute the order of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$. We have a short exact sequence $1 \to \Gamma \to \operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z}) \to 1$, where Γ is matrices in $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ whose reduction modulo p is the identity matrix. Note that any element in $\mathbb{Z}/p^2\mathbb{Z}$ which is 1 mod p is a unit, so any matrix with entries in $\mathbb{Z}/p^2\mathbb{Z}$ which is Id mod p is invertible, so Γ is simply all matrices with entries in $\mathbb{Z}/p^2\mathbb{Z}$ which are Id mod p. There are p^4 of these, so $|\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})| = p^4(p^2 - 1)(p^2 - p)$, and a p-Sylow subgroup of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ is a group with p^5 elements. The easiest example is to take a preimage, in $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ of a Sylow subgroup of $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$. Concretely, we get the group of matrices with entries in $\mathbb{Z}/p^2\mathbb{Z}$ of the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $a \equiv d \equiv 1 \mod p$ and $c \equiv 0 \mod p$.

(5) Let L/K be an algebraic extension of fields of characteristic 0. Assume that for every $\alpha \in L$, the extension $K(\alpha)/K$ has degree ≤ 2 . Show that $[L:K] \leq 2$.

Solution: Indeed, suppose for the sake of contradiction that [L:K] > 2. Then we can find α in L but not in K, so $[K(\alpha) : K] = 2$, and we can then find β in L but not in $K(\alpha)$, so $[K(\alpha, \beta) : K] > 2$. But then, using the primitive element theorem, we can find γ in $K(\alpha, \beta)$ such that $K(\gamma) = K(\alpha, \beta)$, contradicting that we are supposed to have $[K(\gamma) : K] \leq 2$ for all γ in L.