
ALGEBRA I

We use the following standard notation: Z is the ring of integers, Q is the field of
rational numbers, R is the field of real numbers, C is the field of complex numbers,
and Fq is the finite field with q elements (where q = pe for some prime p and e ≥ 1).

(1) Let N be a positive integer with prime factorization pe11 pe22 · · · p
ek
k (where the

pi’s are distinct prime numbers, and the exponents ei are positive). How
many solutions to the equation x2 = x are there in the ring Z/NZ?

Solution: By the Chinese remainder theorem, we have Z/NZ ∼=
∏k

i=1 Z/p
ek
k .

Let x in Z/NZ correspond to (x1, x2, . . . , xk) in the product. Then x2 = x if
and only x2

i = xi for each i. So our challenge is to compute the number of
solutions to x2 = x in Z/peZ.

We claim there are exactly two solutions: 0 and 1. Indeed, if x2 ≡ x
mod pe, then x(1 − x) ≡ 0 mod pe. But x + (1 − x) = 1, so it is impossible
that both x and 1−x are divisible by p, and we must either have x ≡ 0 mod pe

or 1− x ≡ 0 mod pe.

So there are 2 solutions to x2 = x in Z/peZ, and thus 2k solutions in Z/NZ.

(2) An element x of a ring is called nilpotent if there is a positive integer N
with xN = 0. Show that, in a commutative ring, the set of nilpotent elements
form an ideal.

Solution: We must check two things: That a sum of two nilpotent el-
ements is nilpotent, and that the product of a nilpotent element with an
arbitrary element is nilpotent. For the first, let xN1

1 = xN2
2 = 0. Then we

have (x1+x2)
N1+N2 =

∑N1+N2

k=0

(
N1+N2

k

)
xk
1x

N1+N2−k
2 . For each term in this sum,

either k ≥ N1 or N1 + N2 − k ≥ N2, so each summand is 0 and we deduce
that x1 + x2 is nilpotent. For the second, if xN = 0 then (ax)N = aNxN = 0
as well.

(3) (a) Let A = {(x, y, z) ∈ Z3 : x ≡ y ≡ z mod 3}. Give three vectors ~u1, ~u2,
~u3 such that A = Z~u1 ⊕ Z~u2 ⊕ Z~u2.

(b) Let B = {(x, y, z) ∈ Z3 : x + y + z ≡ 0 mod 3}. Give three vectors ~v1,
~v2, ~v3 such that B = Z~v1 ⊕ Z~v2 ⊕ Z~v2.
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(c) Describe the abelian group B/A explicitly as a product of one or more
cyclic groups.

Solution:

(a) We claim that (1, 1, 1), (3, 0, 0) and (0, 3, 0) is one such list. Clearly,
each of these vectors is in A, and the vectors are clearly linearly in-
dependent, so we just need to show that every vector in A is an in-
teger linear combination of these. Suppose that (x, y, z) is in A. Then
(x, y, z) = (x−z, y−z, 0)+z(1, 1, 1) = x−z

3
(1, 0, 0)+ y−z

3
(0, 1, 0)+z(1, 1, 1).

We have shown that every vector in A is an integer linear combination
of (1, 1, 1), (3, 0, 0) and (0, 3, 0).

(b) We claim that (1, 1, 1), (1,−1, 0), (0, 1,−1) is one such list. Clearly, each
of these vectors is in B, and the vectors are clearly linearly independent,
so we just much show that every vector in B is an integer linear com-
bination of these. Suppose that (x, y, z) is in B. Then (x + y + z)/3 is
an integer, and we see that (u, v, w) := (x, y, z) − (x + y + z)/3(1, 1, 1)
is also in B. This latter vector has u + v + w = 0, so (u, v, w) =
u(1,−1, 0) − w(0, 1,−1). We have shown that every vector in B is an
integer linear combination of (1, 1, 1), (1,−1, 0) and (0, 1,−1).

(c) We claim that B/A ∼= Z/3Z. There are many ways to do this com-
putation; here is one of them. Let ~u1 = (1, 1, 1), ~u2 = (3, 0, 0) and
~u3 = (0, 3, 0) be the basis of A and let ~v1 = (1, 1, 1), ~v2 = (1,−1, 0)
and ~v3 = (0, 1,−1) be the basis of B. We compute the change of basis
matrix between the ~u’s and the ~v’s, namely, ~u1 = ~v1, ~u2 = ~v1 + 2~v2 + ~v3
and ~u3 = ~v1 − ~v2 + ~v3. So B/A is isomorphic to the cokernel of the

matrix
[
1 1 1
0 2 −1
0 1 1

]
. The invariant factors of this matrix are (3, 1, 1), so

B/A ∼= Z/3Z.

(4) Let V be a finite dimensional vector space over a field k. Let T : V → V be
a k-linear map of rank r. Calculate the rank of

∧n T :
∧n V →

∧n V for all
n.

Solution: We claim that
∧n T has rank

(
r
n

)
. Choose a basis er+1, er+2, . . . ,

eN for Ker(T ) and complete it to a basis e1, e2, . . . , eN for V . Put fi = T (ei).
Since Span(e1, . . . , er) is transverse to Span(er+1, er+2, . . . , eN) = Ker(T ), the
vectors T (e1), T (e2), . . . , T (er) are linearly independent. Put fi = T (ei) for
1 ≤ i ≤ r and compute f1, f2, . . . , fr to a basis f1, f2, . . . , fN of V .



So

T (ei) =

{
fi i ≤ r

0 i > r
.

Then

T (ei1 ∧ ei2 ∧ · · · ∧ ein) =

{
fi1 ∧ fi2 ∧ · · · ∧ fin i1, i2, . . . , in ≤ r

0 otherwise
.

So, if we write
∧n T using the basis ei1 ∧ ei2 ∧ · · · ∧ ein for the source and

fi1 ∧ fi2 ∧ · · · ∧ fin for the target, we get a diagonal matrix. The nonzero
diagonal entries come from {i1, . . . , in} a subset of {1, 2, . . . , r}, so there are(
r
n

)
nonzero entries on the diagonal and the matrix has rank

(
r
n

)
.

(5) Show that Z[x] and Z[x, x−1] are not isomorphic as rings.

Problem: There are many ways to do this, but probably the easiest is to
note that they have non-isomorphic unit groups: The units of Z[x] are ±1,
whereas the units of Z[x, x−1] are {±xn} ∼= Z/2Z× Z.


