ALGEBRA II

We use the following standard notation: \mathbb{Z} is the ring of integers, \mathbb{Q} is the field of rational numbers, \mathbb{R} is the field of real numbers, \mathbb{C} is the field of complex numbers, and \mathbb{F}_q is the finite field with q elements (where $q = p^e$ for some prime p and $e \ge 1$).

- (1) Let K be a subfield of \mathbb{C} such that K is a Galois extension of \mathbb{Q} with $[K : \mathbb{Q}]$ odd. Show that $K \subset \mathbb{R}$.
- (2) Let p be an odd prime number. Form the semidirect product $G = \mathbb{F}_p \rtimes \mathbb{F}_p^*$ for the standard (scalar multiplication) action of \mathbb{F}_p^* on \mathbb{F}_p . Let ℓ be a prime. Calculate the cardinality of the set of all group homomorphisms G to the cyclic group $\mathbb{Z}/\ell\mathbb{Z}$ in the following cases:
 - (a) ℓ is a prime number different from p.
 - (b) $\ell = p$.
- (3) Let p be a prime number, and let $k = \mathbb{F}_p(x)$. For $f(x) \in k$, let $K_f = k[y]/(y^p f(x))$. Show that the ring K_f is a field exactly when f(x) is not a p-th power.
- (4) Fix a prime number *p*. Describe a *p*-Sylow subgroup in each of the following groups:
 - (a) $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$
 - (b) $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$

Here we use the following notation: for any ring R, the group $GL_2(R)$ is the group (2×2) invertible matrices over R (with group operation being matrix multiplication).

(5) Let L/K be an algebraic extension of fields of characteristic 0. Assume that for every $\alpha \in L$, the extension $K(\alpha)/K$ has degree ≤ 2 . Show that $[L:K] \leq 2$.

Date: Aug 2021.