Qualifying Exam Algebra May 2020 Morning

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} and \mathbb{F}_p are the integers, the rationals, the real numbers, the complex numbers and the field with p elements respectively.

- (1) For a nonnegative integer n and a complex number λ , let $J_n(\lambda)$ be the $n \times n$ Jordan block with eigenvalue λ . What is the Jordan canonical form of $J_n(\lambda)^2$?
- (2) (a) Show that a group of order $2^n \cdot 11$ is solvable if n < 10.
 - (b) Show that any group G of order $2^n \cdot 11$ is solvable if $n \ge 10$. (Hint: Define a group homomorphism $\varphi : G \to S_{11}$ and show that the kernel and image of φ are solvable.)
- (3) Let R be a commutative ring equipped with an element f. Suppose that R is an integral domain, (f) is a prime ideal, and that the localization R_f is a field. (Here R_f is the localization $S^{-1}R$ of R with respect to the multiplicative monoid $S = \{1, f, f^2, f^3, \ldots\}$.) Show that (f) is a maximal ideal in R.
- (4) Suppose that p is a prime number, let K be the splitting field of the polynomial $f(x) = x^5 2px + p$ over \mathbb{Q} and let G be the Galois group of K over \mathbb{Q} .
 - (a) Show that G contains a 5-cycle.
 - (b) Show that G contains a 2-cycle. (You may use the fact that f(x) has exactly 3 real roots.)
 - (c) What is the degree of the field extension K/\mathbb{Q} ?
- (5) Let $R = \mathbb{C}[x, y]/(x^3, y^3)$.
 - (a) What are the zero divisors in R?
 - (b) For every integer $n \ge 1$, describe all elements $a \in R$ with $a^n = 1$.

Qualifying Exam Algebra May 2020 Afternoon

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} and \mathbb{F}_p are the integers, the rationals, the real numbers, the complex numbers and the field with p elements respectively.

- (1) Suppose that V and W are \mathbb{R} -vector spaces of dimension n and m, and suppose that $L: V \to W$ is a linear map.
 - (a) Show that there is a unique linear map $M : \bigwedge^2 V \to \bigwedge^2 W$ such that $M(v_1 \wedge v_2) = Lv_1 \wedge Lv_2$ for all $v_1, v_2 \in V$.
 - (b) Let k be the dimension of the kernel of L. Express the rank of the kernel of M in terms of k, n and m.
- (2) Describe the automorphism groups of the following rings:
 - (a) $\mathbb{Z}[x];$
 - (b) \mathbb{F}_9 .
- (3) Consider the polynomial $p(x) = x^{10} + x^2 + 1 \in \mathbb{F}_2[x]$ and let K be its splitting field.
 - (a) Write p(x) as a product of irreducible polynomials. (Prove your answer.)
 - (b) How many elements does K have?
- (4) For a prime number p, show that all elements in the group $\operatorname{GL}_2(\mathbb{F}_p)$ of order p are in the same conjugacy class.
- (5) Define

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -3 & 0 \\ -3 & 4 & -3 \\ 0 & -3 & 4 \end{pmatrix}.$$

Determine whether there exists a real 3×3 matrix C with $CAC^T = B$.