Algebra II Exam – Fall 2020 The symbols \mathbb{F}_p , \mathbb{Z} , \mathbb{Q} , \mathbb{C} denote the finite field with p elements, the integers, the rational numbers, and the complex numbers **Problem 1.** Can the alternating group A_{2020} be generated by three permutations x, y, and z satisfying xy = zxy, xz = zx, and yz = zy? Be sure to justify your answer. **Problem 2.** Let G be the group of all invertible upper-triangular 2×2 real matrices (with group law matrix multiplication). Let H be the subset of G consisting of all elements of the form g^2 with $g \in G$. Show that H is a subgroup of G and compute its index. **Problem 3.** Let a and b be rational numbers such that $a^2+b^2=1$, and suppose that a+bi is not a square in the field $\mathbb{Q}(i)$, where $i=\sqrt{-1}$. Let $K=\mathbb{Q}(i,\sqrt{a+bi})$. Show that K is Galois over \mathbb{Q} and describe its Galois group. **Problem 4.** Let ℓ be an odd prime number, let p be a prime congruent to 1 modulo ℓ , and let $G = \mathrm{GL}_2(\mathbb{F}_p)$. Give an example of an ℓ -Sylow subgroup of G, and compute how many ℓ -Sylow subgroups G has. You may use without proof the fact that the multiplicative group \mathbb{F}_p^{\times} is cyclic. **Problem 5.** Let p be a prime number and let K be a field of characteristic p. Let $a, b \in K$, with $a \neq 0$, and let L be the splitting field of $x^p - ax - b$ over K. Show that L/K is Galois and that its Galois group is solvable.