
August 2020, Qualifying Review Algebra, Part I

Problem 1. Let V and W be finite dimensional complex vector spaces, and let v1, v2 ∈ V
and w1, w2 ∈ W . Let T be the tensor v1⊗w1 + v2⊗w2 in V ⊗W . Show that, if T is of the
form x⊗ y for some x ∈ V and y ∈ W , then either v1 and v2 are linearly dependent or else
w1 and w2 are linearly dependent.

Solution. Proceeding by contradiction, suppose v1 and v2 are linearly independent and w1

and w2 are linearly independent. We can then find bases v1, v2, . . . , vn and w1, w2, . . . , wm of
V and W . The tensors vi ⊗ wj are a basis for the tensor product V ⊗W . By assumption,
we have an expression

v1 ⊗ w1 + v2 ⊗ w2 =

(
n∑

i=1

aivi

)
⊗

(
m∑
j=1

bjwj

)
Expanding the product and equating coefficients, we find

a1b1 = 1, a1b2 = 0, a2b1 = 0, a2b2 = 1.

This is a contradiction: the first and fourth equations imply that a1, a2, b1, and b2 are
non-zero, and therefore a1b2 cannot be zero.

Problem 2. Let I be the ideal 〈x2 + 1, y2 + 1〉 in the ring Q[x, y]. Show that I is not prime,
and give a prime ideal containing I.

Solution. The ideal I contains the element (x2 + 1)− (y2 + 1) = (x− y)(x+ y). We claim
that x − y and x + y do not belong to I. Indeed, let f : Q[x, y] → C be the unique ring
homomorphism with f(x) = i and f(y) = −i. Then f(x2 + 1) = 0 and f(y2 + 1) = 0, so
f(I) = 0, but f(x− y) = 2i 6= 0; thus x− y 6∈ I. The proof for x+ y is similar. We conclude
that I is not prime.

Let J be the ideal of Q[x, y] generated by x2 + 1, y2 + 1, and x− y. Of course, J contains
I. We have Q[x, y]/J ∼= Q[x]/(x2 +1) since x = y in Q[x, y]/J . Since x2 +1 is an irreducible
polynomial over Q, the quotient Q[x]/(x2 + 1) is a domain, and so J is prime.

Problem 3. Let p(x, y) be an irreducible polynomial with complex coefficients. Let R be

the subring of C(x, y) consisting of all rational functions f(x,y)
g(x,y)

such that p(x, y) - g(x, y).

Show that R is a PID.

Solution. Since R is a subring of a field, it is a domain. Let I be an ideal of R. Let n ≥ 0
be minimial such that pn ∈ R. Then (pn) ⊂ I. We claim that we have equality. Indeed,
suppose f/g ∈ I with f, g 6= 0. Write f = pkf ′ where f ′ is coprime to p, which is possible
since C[x, y] is a UFD. Then g/f ′ belongs to R, and so pk = (f/g)(g/f ′) belongs to I. By
minimality of n, we have k ≥ n. Thus f/g = (pk−nf ′/g)pn belongs to (pn), which establishes
the claim. Thus every ideal of R is principal. This completes the proof.

Problem 4. Counting up to isomorphism, how many abelian groups G are there such that
G is generated by at most three elements and g4 = 1 for all g ∈ G?



Solution. Let G be an abelian group generated by 3 elements such that g4 = 1 for all g ∈ G.
First notice that G is finite: indeed, if g1, g2, g3 are generators then every element of G has
the form gn1

1 g
n2
2 g

n3
3 for n1, n2, n3 ∈ {0, . . . , 3}. Also, every element of G has order dividing 4.

Applying the structure theorem of finite abelian groups, we have an isomorphism

G ∼= Z/2e1Z× Z/2e2Z× · · · × Z/2erZ

for unique positive integers e1 ≥ · · · ≥ er ≥ 1. We must have ei ≤ 2 for all i since every
element has order ≤ 4. We also must have r ≤ 3: indeed, (Z/2Z)r is a quotient of G, and
therefore generated by 3 elements, and thus must have dimension ≤ 3 as a vector space over
Z/2Z by linear algebra. On the other hand, given any r ≤ 3 and any sequence of e’s, we get
a G satisfying the conditions. We can assume r = 3 in all cases by allowing some of the e’s
to be 0. The list of possible e’s is then:

000, 100, 110, 111, 200, 210, 211, 220, 221, 222

We thus see that there are 10 such G’s (up to isomorphism).

Problem 5. Let A be a 3× 3 integer matrix. Suppose that, considered as a matrix over C,
the matrix A has Jordan form  0 1

0 0
0

 .

Let Ā be the reduction of A modulo p. What are the possible Jordan forms of Ā, considered
as a matrix over the algebraic closure of Fp?

Solution. Since A is conjugate to a nilpotent matrix, it is nilpotent, and so Ā is nilpotent
as well. Thus all of its eigenvalues are 0. There are three possible Jordan forms for a 3× 3
nilpotent matrix:  0

0
0

 ,

 0 1
0 0

0

 ,

0 1 0
0 0 1
0 0 0


Call these I, II, and III.

Case I can occur as the Jordan form of Ā: take

A =

 0 p
0 0

0

 .

Then A has the correct Jordan form over C, but Ā = 0. Case II can also obviously occur:
simply take

A =

 0 1
0 0

0

 .

We claim that case III cannot occur. Indeed, let A as in the problem statement be given.
Then A has rank 1 over the complex numbers. Thus all 2× 2 minors of A vanish. It follows
that all 2 × 2 minors of Ā vanish, and so Ā has rank ≤ 1. But the matrix in case III has
rank 2.


