August 2020, Qualifying Review Algebra, Part I

Problem 1. Let V and W be finite dimensional complex vector spaces, and let vy, v9 € V
and wy, wy € W. Let T be the tensor v; ® wi + v, ® wy in V ® W. Show that, if T"is of the
form z ® y for some x € V and y € W, then either v; and vy are linearly dependent or else
wy and ws are linearly dependent.

Solution. Proceeding by contradiction, suppose v; and v, are linearly independent and w;
and wy are linearly independent. We can then find bases vy, vy, ..., v, and wy,wo, ..., w,, of
V and W. The tensors v; ® w; are a basis for the tensor product V' ® W. By assumption,
we have an expression

V1 @ Wy + vy @ wy = (Z aﬂ)i) X (Z bjU)j)
j=1

i=1
Expanding the product and equating coefficients, we find
albl = 1, Cllbg = O, agbl = 0, (lgbg =1.

This is a contradiction: the first and fourth equations imply that aq, as, b, and by are
non-zero, and therefore a;b, cannot be zero.

Problem 2. Let I be the ideal (z?+1,y?+ 1) in the ring Q[z,y]. Show that I is not prime,
and give a prime ideal containing I.

Solution. The ideal I contains the element (2 +1) — (y* + 1) = (z — y)(z + y). We claim
that  — y and = + y do not belong to I. Indeed, let f: Q[z,y] — C be the unique ring
homomorphism with f(z) =i and f(y) = —i. Then f(z? +1) = 0 and f(y*+ 1) = 0, so
f(I) =0, but f(x—y)=2i # 0; thus z —y & I. The proof for z + y is similar. We conclude
that I is not prime.

Let J be the ideal of Q[z,y| generated by 2>+ 1, y? + 1, and x — y. Of course, J contains
I. We have Qlz,y]/J = Q[z]/(z*+1) since x = y in Q[z,y]/J. Since 2%+ 1 is an irreducible
polynomial over Q, the quotient Q[z]/(2? + 1) is a domain, and so J is prime.

Problem 3. Let p(x,y) be an irreducible polynomial with complex coefficients. Let R be

the subring of C(z,y) consisting of all rational functions ggz; such that p(x,y) 1 g(z,y).

Show that R is a PID.

Solution. Since R is a subring of a field, it is a domain. Let I be an ideal of R. Let n > 0
be minimial such that p" € R. Then (p") C I. We claim that we have equality. Indeed,
suppose f/g € I with f,g # 0. Write f = p*f’ where f is coprime to p, which is possible
since C[z,y| is a UFD. Then g/f’ belongs to R, and so p* = (f/g)(g/f') belongs to I. By
minimality of n, we have k > n. Thus f/g = (p*™f'/g)p™ belongs to (p"), which establishes
the claim. Thus every ideal of R is principal. This completes the proof.

Problem 4. Counting up to isomorphism, how many abelian groups G are there such that
G is generated by at most three elements and g* = 1 for all g € G?



Solution. Let G be an abelian group generated by 3 elements such that ¢g* = 1 for all g € G.
First notice that G is finite: indeed, if g1, g2, g3 are generators then every element of G has
ny _ns N

the form g1 g52g5* for ny, ng,n3 € {0,...,3}. Also, every element of G has order dividing 4.
Applying the structure theorem of finite abelian groups, we have an isomorphism

G=Z/29Z X Z)2%Z x --- X Z/2°Z
for unique positive integers e; > --- > e, > 1. We must have e; < 2 for all 7 since every
element has order < 4. We also must have r < 3: indeed, (Z/2Z)" is a quotient of G, and
therefore generated by 3 elements, and thus must have dimension < 3 as a vector space over
Z /27 by linear algebra. On the other hand, given any r < 3 and any sequence of e’s, we get

a G satisfying the conditions. We can assume r = 3 in all cases by allowing some of the e’s
to be 0. The list of possible e’s is then:

000, 100, 110, 111, 200, 210, 211, 220, 221, 222
We thus see that there are 10 such G’s (up to isomorphism).

Problem 5. Let A be a 3 x 3 integer matrix. Suppose that, considered as a matrix over C,

the matrix A has Jordan form

0 1

0 0
0

Let A be the reduction of A modulo p. What are the possible Jordan forms of A, considered

as a matrix over the algebraic closure of F,?

Solution. Since A is conjugate to a nilpotent matrix, it is nilpotent, and so A is nilpotent
as well. Thus all of its eigenvalues are 0. There are three possible Jordan forms for a 3 x 3
nilpotent matrix:

o O

O =
o OO
OO =
O = O

Call these I, II, and III.
Case I can occur as the Jordan form of A: take
0 p
A=1 0 0
0

Then A has the correct Jordan form over C, but A = 0. Case II can also obviously occur:
simply take

We claim that case III cannot occur. Indeed, let A as in the problem statement be given.
Then A has rank 1 over the complex numbers. Thus all 2 x 2 minors of A vanish. It follows
that all 2 x 2 minors of A vanish, and so A has rank < 1. But the matrix in case III has
rank 2.



