
QR Exam Algebra
September 3, 2018

Morning

Justify your answers.

(1) Suppose that R is a Unique Factorization Domain (UFD) and S is a subring of R
containing 1 with the following property: if a, b ∈ R are nonzero and ab ∈ S, then
a, b ∈ S. Show that S is also a UFD.

(2) Suppose that the finite group G acts transitively on the set X. For a prime p, let S
be a Sylow p-subgroup of G and N(S) be its normalizer. Define

F := {x ∈ X | g · x = x for all g ∈ S}
as the set of points fixed by S. Prove that N(S) leaves F invariant and acts transi-
tively on F . Be sure to clearly indicate the parts of Sylow theory which you use.

(3) Suppose that R is a Principal Ideal Domain (PID), M is a finitely generated free
R-module and that f : M ×M → R is a bilinear function (i.e., for every x ∈M the
map y 7→ f(x, y) and the map y 7→ f(y, x) are R-module homomorphisms). Show
that the set of values Im(f) := {f(x, y) | x, y ∈M} is an ideal in R.

(4) Let ζ be a 77-th primitive root of unity.
(a) Compute the degree of the field extension d = [Q(ζ) : Q].
(b) For every divisor e of d determine the number of intermediate fields K with

Q ⊆ K ⊆ Q(ζ) and [K : Q] = e.

(5) Suppose that A,B are 2 × 2 matrices with entries in Q such that A2 = 2I and
B2 = −I. Show that A and B do not commute.
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Afternoon

Justify your answers.

(1) What are the prime ideals in the ring F3[x]/(x5 + x4 + 1)? Which of these prime
ideals are maximal?

(2) Suppose that F is a field with q elements, and E/F is a field extension of degree n
with n ≥ 2. Let N : E → F be the norm map.
(a) Give an integer t so that N(x) = xt for all x ∈ E.
(b) Prove that N is onto.
(c) Prove that a nonzero subring of E is a field.
(d) Prove that the set U := {x ∈ E | N(x) = 1} generates E as a ring.

(3) (a) Let V be the space R4 of 4× 1 column vectors. Show that there exists a bilinear
map ϕ :

∧2 V ×
∧2 V → R with the property

ϕ(a ∧ b, c ∧ d) = det(a b c d)

for all (column) vectors a, b, c, d ∈ V . (Here (a b c d) is the 4× 4 matrix whose
columns are a, b, c, d.)

(b) What is the Sylvester signature of ϕ?

(4) Suppose F is an a field, V andW are F-vector spaces and T : V → V and U : W → W
are linear maps that have Jordan canonical forms. Assume that the Jordan canonical
form of T is an m × m Jordan block with eigenvalue a, and the Jordan canonical
form of U is an n×n Jordan block with eigenvalue b. Let S : V ⊗U → V ⊗U be the
unique linear map with the property S(x⊗ y) = Tx⊗ Uy for all x ∈ V and y ∈ U .
(a) Give the characteristic polynomial for S.
(b) Give the Jordan canonical form for S in the case a = b = 0 and m = n = 2.

(5) Suppose that G1, G2 are groups (possibly noncommutative) and that S is a subgroup
of G := G1 ×G2. Let πi be the projection of G1 ×G2 to the i-th factor, Gi. Define
Hi := πi(S), Ki := S ∩Gi.
(a) Prove that Ki is normal in Hi.
(b) Prove that H1/K1

∼= H2/K2.
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(1) If a ∈ R is a unit, then aa−1 = 1 ∈ S, so a, a−1 ∈ S. So R× ⊆ S×. If a ∈ S is
irreducible, and a = bc with b, c ∈ R, then b, c ∈ S. So b or c is a unit. This shows
that a is irreducible in R. Suppose that p1, p2, . . . , pr, q1, . . . , qs are irreducible in S
such that

p1p2 · · · pr = q1q2 · · · qs.

Now p1, . . . , pr, q1, . . . , qs are also irreducible in R. Because R is a UFD, we have
r = s and after rearranging, pi is equal to qi up to a unit in R. But then pi is equal
to qi up to a unit in S. This proves that S is a UFD.

(2) Let g ∈ N(S) and x ∈ F . Then g · x is fixed by S since (Sg) · x = (gS) · x = g · x.
So, N(S) stabilizes F . Given two points x, y ∈ F , there is g ∈ G so that g · x = y.
Since S fixes x, gSg−1 fixes y, so S is also a Sylow group of Gy, the stabilizer of
y in G. Therefore, by Sylow’s theorem applied to Gy, there exists h ∈ Gy so that
S = h(gSg−1)h−1. This means that w := hg ∈ N(S). So w−1 ∈ N(S). We now
calculate that w−1(y) = g−1h−1(y) = g−1(y) = x. It follows that x, y are in the same
orbit of N(S) acting on F .

(3) Let I be the ideal generated by Im(f). Let x1, . . . , xn and y1, . . . , yn be any two bases
for M . Form the Gram matrix A := (f(yj, xi)). Then I is just the R-span of the
entries of A. A basic theorem says that there are scalars r1, . . . , rn and invertible
matrices P,Q so that ri divides ri+1 for i = 1, . . . , n − 1 and PAQ is the diagonal
matrix

D :=


r1

r2
. . .

rn

 .

The previous paragraph applied to D instead of A makes it obvious that I is just
the principal ideal generated by r1. There exist x, y ∈ M so that f(x, y) = r1. We
conclude that I = Im(f) since any element of I has the form cr1 = f(cx, y) ∈ Im(f),
for c ∈ R.

(4)
(a) d = [Q(ζ) : Q] = φ(77) = φ(7 · 11) = (7− 1)(11− 1) = 60 = 22 · 3 · 5.
(b) The Galois group of Q(ζ)/Q is G = (Z/77Z)× = (Z/7Z)××(Z/10Z)× ∼= Z/6Z×

Z/10Z ∼= (Z/2Z × Z/2Z) × Z/3 × Z/5. The subgroups of G are of the form
H = P2×P3×P5. where P2 = 0, P2 = Z/2×Z/2 or P2 is one of the 3 subgroups
of order 2. P3 = 0 or P3 = Z/3Z and P5 = 0 or P5 = Z/5Z. Using the Galois
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correspondence we get the following table:

e = [Q(ζ)H/Q] |H| |P2| |P3| |P3| number of intermediate fields
1 60 4 3 5 1
3 20 4 1 5 1
5 12 4 3 1 1
15 4 4 1 1 1
2 30 2 3 5 3
6 10 2 1 5 3
10 6 2 3 1 3
30 2 2 1 1 3
4 15 1 3 5 1
12 5 1 1 5 1
20 3 1 3 1 1
60 1 1 1 1 1

(5) Suppose that A and B commute. After we conjugate A and B with the same matrix
C we may assume without loss of generality that

A =

(
0 1
2 0

)
Then we set

B =

(
x y
z w

)
.

Since B has trace 0, we have w = −x. From the equation(
z −x

2x 2y

)
= AB = BA =

(
2y x
−2x z

)
follows that x = 0 and z = 2y. Now we have

B2 =

(
2y2 0
0 2y2

)
This cannot be −I. Contradiction.
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(1) Let p(x) = x5 + x4 + 1. Prime ideals in F3[x]/(p(x)) correspond to ideals in F3[x]
that contain p(x). Such ideals are generated by prime divisors (which are the
same as irreducible divisors since F3[x] is a PID). We factor p(x). Since p(1) = 0
we get a factorization p(x) = (x − 1)q(x) where q(x) = x4 − x3 − x2 − x − 1.
Also q(1) = 0 so we have a factorization q(x) = (x − 1)(x3 − x + 1). So we get
p(x) = (x− 1)q(x) = (x− 1)2(x3 − x+ 1). The prime divisors of p(x) (up to a unit)
are x− 1 and x3 − x+ 1. So the prime ideals of F3[x]/(p(x)) are the ideal generated
by x−1 + (p(x)) and the ideal generated by x3−x+ 1 + (p(x)). These ideals are also
maximal, because the quotient with respect to these ideals are finite integral domains
which are fields.

(2) (a) The Galois group of E/F is cyclic of order n, generated by the map x 7→ xq,
whence t = 1 + q + q2 + · · ·+ qn−1.

(b) Clearly N0 = 0. If x is a generator for the cyclic group E× := E \ {0}, Nx =

x1+q+q
2+···+qn−1

. The exponent is a divisor of qn − 1 so the kernel of the group
homomorphism N on the group E× has order 1 + q + q2 + · · · + qn−1. Since
q− 1 = (qn− 1)/(1 + q+ q2 + · · ·+ qn−1), (i) follows from the formula | Im(f)| =
|H/Ker(f)| for a homomorphism f from a finite group H to another group.

(c) If R is a finite integral domain with 1 6= 0, 0 6= a ∈ R, then the map x 7→ ax
is an injection of R into R. Since R is finite, it is a bijection. Therefore, there
exists b ∈ R so that ab = 1. So, R is a field. The statement (c) follows.

(d) From (b), we know that U has cardinality 1+q+q2 + · · ·+qn−1, for n ≥ 2. Since
0 ∈ S, S has cardinality at least 2 + qn−1. A subring of a finite field is a field, by
(c). Therefore, E contains S as a subfield and so there exists an integer m ≥ 1
so that |E| = |S|m, i.e., m = dimS(E). It suffices to prove m = 1. We have the
inequality qn ≥ (2+ q(n−1))m > q(n−1)m, whence n > m(n−1) and (since n ≥ 2),
n
n−1

> m implies m = 1, and the result is proved.

(3) (a) Since the determinant is multi-linear, there exists a unique linear map ψ : V ⊗
V ⊗ V ⊗ V → R with ψ(a ⊗ b ⊗ c ⊗ d) = det(a b c d). Since the determinant
is alternating, ψ factors through γ :

∧2 V ⊗
∧2 V → R. with the property

γ((a ∧ b)⊗ (c ∧ d)) = det(a b c d). For ϕ we can take the decomposition

∧2 V ×
∧2 V →

∧2 V ⊗
∧2 V → R
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(b) In terms of the basis (e1 ∧ e2, e3 ∧ e4, e1 ∧ e3,−e2 ∧ e4, e1 ∧ e4, e2 ∧ e3) we get the
matrix 

0 1
1 0

0 1
1 0

0 1
1 0


This matrix has eigenvalue 1 with multiplicity 3 and −1 with multiplicity 3. So
the signature is (3, 3, 0) (3 positive eigenvalues, 3 negative eigenvalues and no
zero eigenvalues).

(4) (a) Use filtrations on V and U with 1-dimensional factors to get the characteristic
polynomial to be (x− ab)mn.

(b) Take a basis e1, e2 for V which gives the JCF matrix for T on V . Similarly a
basis f1, f2 for U on W . Then (T ⊗U)2 annihilates every standard basis element
ei ⊗ fj, so the minimal polynomial divides x2. So the JCF is a block diagonal
sum of J(0, 1)s and J(0, 2)s. If we order the basis thusly e1⊗ f1, e1⊗ f2, e2⊗ f1,
e2 ⊗ f2, it is obvious that the kernel of T ⊗ U has dimension 3. Therefore the
JCF is a block diagonal sum of two J(0, 1) and one J(0, 2).

(5) (a) Since Gi is normal in G, S normalizes Ki = S∩Gi. Also, for i 6= j, Gj normalizes
any subgroup of Gi, so SGj normalizes Ki. Since SGj = πi(S)×Gj, Hi = πi(S)
normalizes Ki.

(b) For each i, the homomorphism S → Hi/Ki, defined by x 7→π (x)Ki ∈ Hi/Ki for
x ∈ S, is onto and has kernel K1 ×K2. Therefore each Hi/Ki is isomorphic to
S/(K1 ×K2), whence (b) holds.
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