QR Exam Algebra
January 7, 2018
Morning

Justify your answers.

(1)

(2)

(5)

Suppose that R is an integral domain in which every ideal is finitely generated (i.e.,
R is noetherian), and for every a € R there exists an element b € R with v* = a.
Show that R is a field.

Suppose that Vi, V5 ..., V, are nonzero subspaces of the R-vector space V' such that
Vi+Vot+---+V, =V. Let dy,ds, .. .,d, be the dimensions of V1, V3, ..., V, respectively.
Define W as the subspace of A"V spanned by all w; Awy A -+ Aw, with w; € V; for
all 7. Show that
if and only if
dim W = dldg s dr.

Suppose that G is a finite group and

GOZ{G}CG1C"'CGn_1CGn:G

is a chain of subgroups such that the set G;/G;_; has at most 4 elements for i =
1,2...,n. Prove that G is solvable.

Suppose that V' is an R-vector space of dimension 5, and (-, -) is a symmetric bilinear
form on V. A subspace W of V is called totally isotropic if the restriction of (-, -) to
W is equal to 0. Suppose that the largest possible dimension of a totally isotropic
subspace is 2. What are the possibilities for the signature of (-, -)?

(a) Let (1o = €*™/12 be a primitive 12-th root of unity. Show that (13 — ¢J, = v/3.

(b) Let K be the splitting field of X'2—3 over Q. What is the degree of the extension
K/Q?

(c) What is the Galois group of K/Q and how does it act on the roots of X2 — 37
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Justify your answers.

(1) Let H be the subgroup of the symmetric group Sg generated by the 3 elements
01=(12),00=(13)(24) and 03 = (1 5)(26)(3 7)(4 8). Show that H is a 2-Sylow
subgroup of Ss.

(2) Suppose that R is a finite commutative ring with identity. Show that there exists a
ring isomorphism between R and a product Ry x Ry X --- X Ry of rings, such that
the number of elements in R; is a prime power for every i.

(3) Suppose that F'is a field, V' is an F-vector space and vy, vo, v3,v4 € V such that
V1 ® V] Q@ U1,V ® Vs @V, U3 QU3 RQU3, 04 QU QU EVRIVR®V
are linearly dependent. Show that v; = Av; for some A € F' and some ¢, j with ¢ # j.

(4) Assume that L is a Galois extension of the field K with an abelian Galois group G
of order 216 = 233%. Suppose that there are exactly 28 subfields M of L such that
M is a field extension of K of degree 2232 = 36. Determine G.

(5) Suppose that ¢ is a prime power, [, is the field with ¢ elements and A is an invertible
n X n matrix with entries in F,. If the minimal polynomial of A is multiplicity free
(i.e., it is not divisible by the square of an irreducible polynomial), show that A and
A? are conjugate.
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(1) Suppose that a € R is nonzero. We construct a sequence ag, a1,as,... by ag = a

(2)

(3)

and a2, = a, for all n > 0. Let I = (ag,a1,az,...). Since I is finitely generated,
we have I = (ag,aq,...,a;) for some k. But then I = (a;). In particular, we have
ap+1 = bay for some b € R and a; = azﬂ = b%a}. Since a; is nonzero, we can cancel
and get 1 = b%a;. This shows that a; is a unit, and therefore a is a unit because it
is a power of ai. Every nonzero element in R is a unit, so R is a field.

We have a surjective linear map
p:VieV,o---aV, =V

defined by ¢(vy,...,v,.) =v; + -+ + v, and a surjective linear map
P:VieV,®--- @V, =W

with the property ¥ (v @ va ® -+ - ® v,.) = v1 Avg A -+ Av,.. We have to show that ¢
is injective if and only if ¥ is injective.

Suppose @ is not injective. Choose (v, vg, ..., ;) in the kernel. Then vy +wvy+- -+
v, = 0, After permuting V7, ..., V, we may assume without loss of generality vy, ..., v
are nonzero, and vgy; = --- = v, = 0. Choose v;- € V; nonzero for j = s+ 1,...,7.

We have v; +--- 4+ v, =0, so
YU R QU @ RV) =01 A AV AV A AU =0
s+1 r s+1

r

so 1 is not injective.

Suppose that ¢ is injective (and hence an isomorphism). We can choose a basis
Vi1, Vi2, ..,V of V; for all ¢. Then v;1,...,0i4,,V21,...,V24dy,--.,Urqd, IS a basis of
V', and

V(v1j, @ V2, @ - @ Vpj) = Vi AUy Ao AUy,

is a basis of W if j, ranges from 1 to dj, for all 7. This shows that ¢ is injective.

We prove the statement by induction on n. The case n = 0 is clear. The group G,
acts on G, /G,_1. Let H be the kernel of this action. Then G,,/H is a subgroup of S,.
The group S; is solvable, so G,,/H is solvable as well. By the induction hypothesis,
Gn—1 is solvable. So H is solvable because it is contained in G,,_;. Since G,,/H and
H are solvable, G, is solvable.

Suppose that the signature is (a, b, 5—a—>b). There exists a subspace A of dimension a

on which (-, -) is positive definite. Suppose that the restriction of (-,-) to W is trivial.

If ANW contains a nonzero vector, then (v,v) = 0 because v € W and (v,v) > 0

because v € A. Contradiction, so ANW = 0, and dimW < 5 — a. Similarly

dimW <5 —bso2=dimW <5 — max{a,b}. This shows that max{a,b} < 3. On
3



the other hand, the matrix of (-,-) with respect to some basis vy, ..., v, is

I, 0 O
0 —-I, 0O
0O 0 O
If s = min{a, b}, and U is the span of v; + vay1, ..., Vs + Vars, Vaspit, - - -, U5 then the

restriction of (-,-) to U is trivial, and 2 > dimU = s+ 5 —a — b = 5 — max{a, b}.
This shows that max{a,b} > 3. We conclude that max{a,b} = 3.
We have the following possibilities. (3,0,2),(0,3,2),(3,1,1),(1,3,1),(3,2,0), (2, 3,0).

(5) (a) Note that ¢§, = ¢ =i, (fy = (3 = —3 +3V3i and ¢, = (3 = —4 — 1V/3i. So we
have
1121 - §172 = C§2C§2 - Glzdz = (_% - %\/gz)z - (_% + %\/gl)l = \/§
(b) The splitting field is K = Q( ¥/3, (12). Let M = Q((y12). Then we have v/3 € M,

so V/3 satisfies the equation X®—+/3 = 0 over M. This shows that [K : M] < 6.
Also [M : Q] = ¢(12) = 4. It follows that

K :Q]=[K:M]M:Q]<6-4=24.

On the other hand, let L = Q( 1\2/3) Because of Eisenstein’s criterion, X2 — 3
is irreducible over Q, so [L : Q] = 12. Since (j2 is not real, it does not lie in L,
so [K:L>2and [K:Q]=[K:L|L:Q >2-12 = 24. We conclude that
(K : Q] =12.

(c) Let us order the roots as ¥/3,(12 ¥/3,...,,(la ¥/3. Then the Galois group
is generated by a 12-cycle (1 2 3 --- 12) and complex conjugation, which is
(2 12)(3 11)(4 10)(5 9)(6 8). So the Galois group is the dihedral group of order
24.
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we have 8! = 27-(7-3-5-3). So a 2-Sylow subgroup is a subgroup with 27 elements.
We have | = 090109 = (3 4). The group generated by oy, 0] has order 4 and does
not contain oy, and o9 normalizes the subgroup of order 4. So the group H; generated
by o1 and oy has 23 = 8 elements. Let Hy = 03H 03. Then H; x H, is a subgroup
with 26 elements. Now o3 does not lie in H; x Hy, so H/(H; X Hs) has order 2, and
H has order 27 elements.

Consider the ring homomorphism ¢ : Z — R with ¢(1) = 1g. Then the kernel is a
principal ideal (n) where n is a positive integer. We can write n = p]fl .- pkr where
p1, ..., Dy are distinct (positive) primes and ki, ..., k. are positive integers. Let p; be
the ideal in R generated by pf’ Then we have p; +p; = R for ¢ # j. By the Chinese
Remainder Theorem, we get:

R=R/(0) = R/(p1---pr) = R/p1 X --- X R/p,.
The ring R; = R/p; is a finite Z/(p¥)-module. Moreover, we have a chain
0C pfi_lRi - pfi_QRi c---C piRi C R;

such that p/ ' R;/p/R; is an R/(p;)-module for all j. It follows that p! 'R, /p/R; is a
finite dimensional IF,,,-vector space, hence its cardinality is a power of p;. We conclude
that

k;
|Ri| =[] Ip/ " Ri/p!Ril
j=1

is a power of p;.
Suppose that

(*) )\1U1®U1®U1+)\2’U2®U2®U2+)\3’03®U3®U3+)\4’U4®’U4®U4:O.

If vy is not a multiple of vy, vy, v3 then there exist fi, fa, f3 € V* with f;(v;) =0 and
fi(vg) = 1. If we apply f1 ® fo ® f3 to (x) we get Ay = 0. By symmetry, if f; is not a
multiple of f; for all ¢ # j, then \; = 0.

Let G be the Galois Group. Then G = G5 x G3 where Gy and G3 are abelian groups
of order 2° = 8 and 3* = 27. There are 3 possiblities for Gy, namely Z/8, Z/4 x Z./2
and Z/2 X Z/2 x Z/2. There are 3 possibilities for G5, namely Z/27, Z/9 x Z/3 and
Z]3 x Z/3 x Z/3. A field M corresponds to a subgroup H of G of order 6. We can

write H = Hy; x H3 where Hy C G5 has order 2 and Hs C G35 has order 3. The
5



number of choices for H, are

H, | #

7./8 1
Z/AxZ/2 |3
L]2xZL]2xZJ2| 7

The number of choices for H; are
Hy | #
7)27 1
Z/9xZ/3 | 4
Z]3xZ/3xZ/3|13
To count the number of subgroups, note that H, and Hj are cyclic. For example, to
count the number of possibilities of H3 C Z/9 x Z/3, we see that there are 3 elements
a in Z/9 with 3a = 0, and 3 elements b in Z/3 with 3b = 0. So there are 9 pairs (a, b)
with 3(a,b) = 0. If we exclude the i0, then there are 9 — 1 = 8 elements of order 3.
But for every subgroup of order 3 there are 2 choices for a generator, so there are
8/2 = 4 subgroups of Z/9 x Z/3 of order 3.
If there are 28 = 7 - 4 choices for H, then the group must be
Z]2 X Z)2 X Z]2 X Z]I X Z]3=Z/18 X Z]6 x Z]2.
Suppose that the characteristic polynomial ¢(X) of A is irreducible. Then we have
c(A7) = ¢(A)? = 0 So the minimal polynomial of A? divides ¢(X) and must therefore
be ¢(X). So A and A7 have the same invariant factors, namely just ¢(X). This shows
that A and A? are conjugate. More generally, if the minimal polynomial of A does
not have multiplicities, then the elementary divisors are all irreducible. With respect
to some basis, A has a block diagonal form with diagonal blocks Ay, As, ..., A, each
with an irreducible characteristic polynomial. Now A; and A} are conjugate for all 7,
so A and A? are conjugate.




