May 2017, Qualifying Review Algebra, Morning

Problem 1. How many isomorphism classes of abelian groups of order 6* are there?

Solution. For an integer n > 1, let S(n) be the set of isomorphism classes of abelian groups
of order n*. First suppose that n = p is prime. By the structure theorem for finite abelian
groups, every abelian group of order p* is uniquely isomorphic to a product

Z/p*Z x - X L/p*Z

where e > e3> --- >¢, > 1and e; + -+ + ¢, = 4. Thus #S5(p) is the number of sequences
(é1,...,er) that are non-increasing and sum to 4, i.e., the number of partitions of 4. There
are exactly five such sequences, so #S5(p) = 5 for all p.

Now suppose that p and ¢ are distinct primes. If G is an abelian group of order (pq)* then
by the Chinese Remainder Theorem G canonically decomposes as G; x G5, where G; has
order p* and G5 has order ¢*. We thus see that S(pq) is in bijection with S(p) x S(q), and
therefore has 5 -5 = 25 elements. In particular, taking p = 2 and ¢ = 3, we see that there
are 25 isomorphism classes of abelian groups of order 6*.

Problem 2. Let (, = €2™/" be a primitive n' root of unity.

(a) For which positive integers n does Q((,) contain v/2?
(b) For which positive integers n does Q((,) contain v/2?

Solution. (a) We have v2 = (3 + (3!, and so Q((g) contains v/2. It follows that Q((,)
contains /2 whenever 8 | n, since then Q(¢s) C Q((,). Suppose now that v/2 € Q(¢,). Then

V2 belongs to Q((,) N Q(Cs) = Q(Caed(ns))- Since v/2 does not belong to Q(¢) = Q(v/—1),
we see that ged(n,8) = 8, and so n is divisible by 8. Thus Q((,) contains v/2 if and only if
n is divisible by 8.

(b) Since Q(¢,)/Q is a Galois extension with abelian Galois group, every subextension
is also abelian over Q. Since Q(\S/ﬁ) /Q is not abelian, we see that v/2 is not contained in

Q((,) for any n.

Problem 3. Suppose that A and B are complexe, invertible n x n matrices with AB+ BA =
0. Show that there exists a complex, invertible n x n matrix C' such that A + CAC = 0.

Solution. We made a change to this problem at the last minute, which makes it fairly
trivial: one can just take C' to be v/—1 times the identity matrix! The following is the
solution we had in mind when making the problem:

Without loss of generality, we may assume that A is in Jordan normal form. Let Jy, ..., J,
be the Jordan blocks. Since —A = BAB™! is conjugate to A, we see that —J; is conjugate
to a Jordan block J; of A. Since A is invertible, none of its eigenvalues are 0, and so Jj, is
distinct from J;. We may thus assume that Jor. 1 is conjugate to —Jogio for each k. It now
suffices to consider the case of two Jordan blocks, since we can just work two blocks at a

time. Thus
J 0
=5 %)



for some Jordan block J. Putting

0 I
o=(1 )

Problem 4. Let V be the set of 2 x 2 real matrices, thought of as a 4-dimensional real
vector space. For a real number A, define a symmetric bilinear form (, ) on V' by

(A, BY = NTr(AB) + Tr(ABY)

Here Tr is trace and B? is the transpose of B. For which A is this form positive definite?

we find A+ CAC = 0, as required.

Solution. We choose the basis

(10 (o0 (01 (00
=10 0)2 o 1/ \o o)™ \1 0

of V. Calculating the matrix ((e;, e;)) gives

1+X 0 0 0
0 1+XA 00
0 0 1 A
0 0 X1

The eigenvalues are 1+ A, 1+ A, 1+ A, 1 — A, which are all positive exactly when —1 < A < 1.

Problem 5. Let p be a prime number and let n be a positive integer.

(a) Show that there is a positive integer m, depending on p and n, such that if A is an
invertible n x n matrix with entries in F, that is diagonalizable over the algebraic
closure Fp then A™ =id,,.

(b) Determine the minimal positive m in (a) when p = 3 and n = 4.

Solution. For (a), one can simply take m to be the order of GL,(F,): since this is a
finite group, any element of it has order dividing the order of the group. For the sake of
answering part (b), we will give a more detailed analysis. Suppose that A is as in (a), and
let A1,..., )\, be its eigenvalues. Since each \; satisfies the characteristic polynomial of A,
which is a degree n polynomial with coefficients in F,,, it belongs to an extension of F, of

degree at most n. Since the multiplicative group F*, has order p* — 1, we see that \? g
P (2

for some 1 < k < n. It follows that we can take m to be the lem of the numbers p* — 1 for
1 <k <n. Note that this is significantly smaller than the order of GL,(F,).

We claim that this is the minimal positive value for m, for any p and n. To see this, it
suffices to show that for each 1 < k < n there is a matrix A as in (a) such that A has order
p¥ — 1. Thus let k be given. The multiplicative group F;k is cyclic. Let A be a generator.
There is an injective ring homomorphism i: Fx — M(F,): given € F, multiplication
by x defines a linear endomorphism of F, which we think of as a k-dimensional F-vector
space, and thus (after picking a basis) gives a k x k matrix with F,, coefficients. Let B be
the matrix 4(\). Then B has order p* — 1. Now put

B 0
A(o idn_k)



Then A is an n X n matrix with coefficients in F, and has order p* — 1. This proves the
claim.

We thus see that the answer to (b) is the lem of the numbers 3 — 1 for 1 < k < 4, i.e.,
lem(2, 8,26,80). This is 1040.
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Problem 1. Let G be a finite group and let p be a prime number. Show that the following
conditions are equivalent:
(a) The group G acts transitively on a set X such that the cardinality of X is at least 2
and relatively prime to p.
(b) The order of G is not a power of p.

Solution. Suppose (b) holds. Let P be a p-Sylow subgroup of G and let X = G/P. Then
G acts transitively on X by left multiplication. The cardinality of X is relatively prime to
P (since P is a p-Sylow) and greater than 1 (since G # P).

Now suppose (a) holds, and let X be given as in (a). Let H be the stabilizer of a point
of X. Then G/H is in bijection with X, and so the cardinality of X divides the order of G.
This proves (b).

Problem 2. Suppose that R is a commutative ring with 1, and p and q are prime ideals
of R such that every element of R\ (p U q) is a unit. Show that at least one of p or q is
maximal.

Solution. If q is maximal there is nothing to do, so assume this is not the case. Note that
p is not contained in g, as otherwise every element of R\ q would be a unit, which would
imply that q is maximal. Let m be a proper ideal properly containing q. Pick a € g\ p and
b€ m) g. Since b is not a unit and does not belong to q, it must belong to p. We thus see
that a + b does not belong to p (as b € p and a ¢ p) and also does not belong to q (similar
reason), and is therefore a unit. However, both a and b belong to m, and so a + b belongs to
m, a contradiction.

Problem 3. Suppose that K is a field of characteristic # 2 and L = K(f) is a field extension
of K with 3%+ 372 € K. Show that L/K is a Galois extension.

Solution. We have
(X=X +)X - HX+5)=X"=(8°+5)X*+1 e K[X].

Clearly, L is the splitting field of this polynomial, and thus L/K is a normal extension. If
B = +B7! then L/K is quadratic, and thus Galois (as the characteristic is not 2); otherwise,
the above polynomial has distinct roots, and thus L/K is separable, and thus Galois.

Problem 4. Suppose that V' is a real vector space of dimension n.
(a) Show that there exists a linear map ¢: A*V — Hom(V*, V) such that

planD)(f) = fla)b— f(b)a
for all a,b e V.
(b) Suppose n is odd. Show that no element of the image of ¢ is invertible.

Solution. (a) Consider the map
Yo VXV — HOIH(V*, V)> SOO(CLa b)(f) = f(a')b - f(b)a



This function is bilinear and alternating. Thus, by the universal property of exterior powers,
o induces the desired linear map .

(b) Let ey,...,e, be a basis for V' and let e},..., e} be the dual basis of V*. Consider
the matrix A(v) for ¢(v): V* — V in this basis, where v € A*V. We first treat the case
v =aAb. We have

planb)(ef) = ej(a)b —ei(b)a.
The (i,j) entry A(a Ab) is the coefficient of e; in the above vector, which is computed by
applying €} to it. We thus see that the (i, j) entry is

ei(a)es(b) —ef(b)ei(a).

i\9)E j
This is anti-symmetric in 7 and j, and so A(a A b) is a skew-symmetric matrix. Since every
element of A’V is a linear combination of elements of the form a A b, we see that A(v)
is skew-symmetric for all v € /\2V. Since n is odd, any skew-symmetric n X n matrix is
singular, and so A(v) is singular for all v.

Problem 5. Let V = {1,2,3,4,5,6,7,8}. A matching on V is a set { £y, Es, E3, E4} where
each Fj; is a two-element subset of V such that V = £, U Ey U E3U E,. Let M be the set of
matchings. The group Sg naturally acts on M, and the action is transitive. Let G C Sg be
the stabilizer of some matching. How many orbits does G have on M?

Solution. Let G = Sy x S5 be the stabilizer of {{1,2},{3,4},{5,6},{7,8}}. Suppose that
F ={F, F,, Fs, F,} is a matching. We draw a graph on 8 vertices, with an edge between
a and b whenever {a,b} is equal to E; or F; for some i. Every vertex had degree 2. The
graph is a union of disjoint cycles of even length. Two matchings F and F' lie in the same
G orbit if and only if the corresponding graphs have the same cycle lengths. So the number
of orbits is equal to the number of partitions of 8 into even numbers, which is the number
of partitions of 4. There are 5 partitions of 4, so there are 5 orbits.



	algQRMay17
	algQRMay17sol

