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Problem 1. How many isomorphism classes of abelian groups of order 64 are there?

Solution. For an integer n ≥ 1, let S(n) be the set of isomorphism classes of abelian groups
of order n4. First suppose that n = p is prime. By the structure theorem for finite abelian
groups, every abelian group of order p4 is uniquely isomorphic to a product

Z/pe1Z× · · · × Z/pekZ

where e1 ≥ e2 ≥ · · · ≥ ek ≥ 1 and e1 + · · ·+ ek = 4. Thus #S(p) is the number of sequences
(e1, . . . , ek) that are non-increasing and sum to 4, i.e., the number of partitions of 4. There
are exactly five such sequences, so #S(p) = 5 for all p.

Now suppose that p and q are distinct primes. If G is an abelian group of order (pq)4 then
by the Chinese Remainder Theorem G canonically decomposes as G1 × G2, where G1 has
order p4 and G2 has order q4. We thus see that S(pq) is in bijection with S(p)× S(q), and
therefore has 5 · 5 = 25 elements. In particular, taking p = 2 and q = 3, we see that there
are 25 isomorphism classes of abelian groups of order 64.

Problem 2. Let ζn = e2πi/n be a primitive nth root of unity.

(a) For which positive integers n does Q(ζn) contain
√

2?
(b) For which positive integers n does Q(ζn) contain 3

√
2?

Solution. (a) We have
√

2 = ζ8 + ζ−18 , and so Q(ζ8) contains
√

2. It follows that Q(ζn)
contains

√
2 whenever 8 | n, since then Q(ζ8) ⊂ Q(ζn). Suppose now that

√
2 ∈ Q(ζn). Then√

2 belongs to Q(ζn)∩Q(ζ8) = Q(ζgcd(n,8)). Since
√

2 does not belong to Q(ζ4) = Q(
√
−1),

we see that gcd(n, 8) = 8, and so n is divisible by 8. Thus Q(ζn) contains
√

2 if and only if
n is divisible by 8.

(b) Since Q(ζn)/Q is a Galois extension with abelian Galois group, every subextension
is also abelian over Q. Since Q( 3

√
2)/Q is not abelian, we see that 3

√
2 is not contained in

Q(ζn) for any n.

Problem 3. Suppose that A and B are complexe, invertible n×n matrices with AB+BA =
0. Show that there exists a complex, invertible n× n matrix C such that A+ CAC = 0.

Solution. We made a change to this problem at the last minute, which makes it fairly
trivial: one can just take C to be

√
−1 times the identity matrix! The following is the

solution we had in mind when making the problem:
Without loss of generality, we may assume that A is in Jordan normal form. Let J1, . . . , Jr

be the Jordan blocks. Since −A = BAB−1 is conjugate to A, we see that −Ji is conjugate
to a Jordan block Jk of A. Since A is invertible, none of its eigenvalues are 0, and so Jk is
distinct from Ji. We may thus assume that J2k+1 is conjugate to −J2k+2 for each k. It now
suffices to consider the case of two Jordan blocks, since we can just work two blocks at a
time. Thus

A =

(
J 0
0 −J

)



for some Jordan block J . Putting

C =

(
0 I
I 0

)
,

we find A+ CAC = 0, as required.

Problem 4. Let V be the set of 2 × 2 real matrices, thought of as a 4-dimensional real
vector space. For a real number λ, define a symmetric bilinear form 〈 , 〉 on V by

〈A,B〉 = λTr(AB) + Tr(ABt)

Here Tr is trace and Bt is the transpose of B. For which λ is this form positive definite?

Solution. We choose the basis

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
e3 =

(
0 1
0 0

)
, e4 =

(
0 0
1 0

)
of V . Calculating the matrix (〈ei, ej〉) gives

1 + λ 0 0 0
0 1 + λ 0 0
0 0 1 λ
0 0 λ 1

 .

The eigenvalues are 1+λ, 1+λ, 1+λ, 1−λ, which are all positive exactly when −1 < λ < 1.

Problem 5. Let p be a prime number and let n be a positive integer.

(a) Show that there is a positive integer m, depending on p and n, such that if A is an
invertible n × n matrix with entries in Fp that is diagonalizable over the algebraic
closure Fp then Am = idn.

(b) Determine the minimal positive m in (a) when p = 3 and n = 4.

Solution. For (a), one can simply take m to be the order of GLn(Fp): since this is a
finite group, any element of it has order dividing the order of the group. For the sake of
answering part (b), we will give a more detailed analysis. Suppose that A is as in (a), and
let λ1, . . . , λn be its eigenvalues. Since each λi satisfies the characteristic polynomial of A,
which is a degree n polynomial with coefficients in Fp, it belongs to an extension of Fp of

degree at most n. Since the multiplicative group F×
pk

has order pk− 1, we see that λp
k−1
i = 1

for some 1 ≤ k ≤ n. It follows that we can take m to be the lcm of the numbers pk − 1 for
1 ≤ k ≤ n. Note that this is significantly smaller than the order of GLn(Fp).

We claim that this is the minimal positive value for m, for any p and n. To see this, it
suffices to show that for each 1 ≤ k ≤ n there is a matrix A as in (a) such that A has order
pk − 1. Thus let k be given. The multiplicative group F×

pk
is cyclic. Let λ be a generator.

There is an injective ring homomorphism i : Fpk → Mk(Fp): given x ∈ Fpk multiplication
by x defines a linear endomorphism of Fpk , which we think of as a k-dimensional Fp-vector
space, and thus (after picking a basis) gives a k × k matrix with Fp coefficients. Let B be
the matrix i(λ). Then B has order pk − 1. Now put

A =

(
B 0
0 idn−k

)



Then A is an n × n matrix with coefficients in Fp and has order pk − 1. This proves the
claim.

We thus see that the answer to (b) is the lcm of the numbers 3k − 1 for 1 ≤ k ≤ 4, i.e.,
lcm(2, 8, 26, 80). This is 1040.
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Problem 1. Let G be a finite group and let p be a prime number. Show that the following
conditions are equivalent:

(a) The group G acts transitively on a set X such that the cardinality of X is at least 2
and relatively prime to p.

(b) The order of G is not a power of p.

Solution. Suppose (b) holds. Let P be a p-Sylow subgroup of G and let X = G/P . Then
G acts transitively on X by left multiplication. The cardinality of X is relatively prime to
P (since P is a p-Sylow) and greater than 1 (since G 6= P ).

Now suppose (a) holds, and let X be given as in (a). Let H be the stabilizer of a point
of X. Then G/H is in bijection with X, and so the cardinality of X divides the order of G.
This proves (b).

Problem 2. Suppose that R is a commutative ring with 1, and p and q are prime ideals
of R such that every element of R \ (p ∪ q) is a unit. Show that at least one of p or q is
maximal.

Solution. If q is maximal there is nothing to do, so assume this is not the case. Note that
p is not contained in q, as otherwise every element of R \ q would be a unit, which would
imply that q is maximal. Let m be a proper ideal properly containing q. Pick a ∈ q \ p and
b ∈ m \ q. Since b is not a unit and does not belong to q, it must belong to p. We thus see
that a + b does not belong to p (as b ∈ p and a 6∈ p) and also does not belong to q (similar
reason), and is therefore a unit. However, both a and b belong to m, and so a+ b belongs to
m, a contradiction.

Problem 3. Suppose that K is a field of characteristic 6= 2 and L = K(β) is a field extension
of K with β2 + β−2 ∈ K. Show that L/K is a Galois extension.

Solution. We have

(X − β)(X + β)(X − β−1)(X + β−1) = X4 − (β2 + β−2)X2 + 1 ∈ K[X].

Clearly, L is the splitting field of this polynomial, and thus L/K is a normal extension. If
β = ±β−1 then L/K is quadratic, and thus Galois (as the characteristic is not 2); otherwise,
the above polynomial has distinct roots, and thus L/K is separable, and thus Galois.

Problem 4. Suppose that V is a real vector space of dimension n.

(a) Show that there exists a linear map ϕ :
∧2V → Hom(V ∗, V ) such that

ϕ(a ∧ b)(f) = f(a)b− f(b)a

for all a, b ∈ V .
(b) Suppose n is odd. Show that no element of the image of ϕ is invertible.

Solution. (a) Consider the map

ϕ0 : V × V → Hom(V ∗, V ), ϕ0(a, b)(f) = f(a)b− f(b)a.



This function is bilinear and alternating. Thus, by the universal property of exterior powers,
ϕ0 induces the desired linear map ϕ.

(b) Let e1, . . . , en be a basis for V and let e∗1, . . . , e
∗
n be the dual basis of V ∗. Consider

the matrix A(v) for ϕ(v) : V ∗ → V in this basis, where v ∈
∧2V . We first treat the case

v = a ∧ b. We have
ϕ(a ∧ b)(e∗i ) = e∗i (a)b− e∗i (b)a.

The (i, j) entry A(a ∧ b) is the coefficient of ej in the above vector, which is computed by
applying e∗j to it. We thus see that the (i, j) entry is

e∗i (a)e∗j(b)− e∗i (b)e∗j(a).

This is anti-symmetric in i and j, and so A(a ∧ b) is a skew-symmetric matrix. Since every
element of

∧2V is a linear combination of elements of the form a ∧ b, we see that A(v)
is skew-symmetric for all v ∈

∧2V . Since n is odd, any skew-symmetric n × n matrix is
singular, and so A(v) is singular for all v.

Problem 5. Let V = {1, 2, 3, 4, 5, 6, 7, 8}. A matching on V is a set {E1, E2, E3, E4} where
each Ei is a two-element subset of V such that V = E1 ∪E2 ∪E3 ∪E4. LetM be the set of
matchings. The group S8 naturally acts on M, and the action is transitive. Let G ⊂ S8 be
the stabilizer of some matching. How many orbits does G have on M?

Solution. Let G ∼= S4 n S4
2 be the stabilizer of {{1, 2}, {3, 4}, {5, 6}, {7, 8}}. Suppose that

F = {F1, F2, F3, F4} is a matching. We draw a graph on 8 vertices, with an edge between
a and b whenever {a, b} is equal to Ei or Fi for some i. Every vertex had degree 2. The
graph is a union of disjoint cycles of even length. Two matchings F and F ′ lie in the same
G orbit if and only if the corresponding graphs have the same cycle lengths. So the number
of orbits is equal to the number of partitions of 8 into even numbers, which is the number
of partitions of 4. There are 5 partitions of 4, so there are 5 orbits.
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