QR Exam Algebra January 4, 2017 Morning

- (1) Suppose that R is a commutative ring with 1 with only finitely many ideals. Suppose that $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_d$ are all maximal ideals.
 - (a) Show that if $a \in \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_d$ then a is nilpotent.
 - (b) Show that if the number of distinct ideals of R is not a power of 2, then R contains a nonzero nilpotent element.
- (2) Suppose that G is group of order $2^4 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ with a normal 2-Sylow subgroup. Show that the center of G contains more than 1 element.
- (3) We denote the field with q elements by \mathbb{F}_q . Let $\psi : \mathbb{F}_{3^{18}} \to \mathbb{F}_{3^{18}}$ be the map defined by $\psi(a) = a^3 a$. For which positive integers d is the kernel of ψ^d a subfield of $\mathbb{F}_{3^{18}}$?
- (4) Let D_4 be the dihedral group with 8 elements. Construct a Galois extension K/\mathbb{Q} with Galois group D_4 . In your example, describe explicitly all intermediate fields L with $\mathbb{Q} \subset L \subset K$ such that L/\mathbb{Q} is an extension of degree 2.
- (5) (a) Give an example of a nonzero finitely generated $\mathbb{Z}[X]$ -module M which is torsion-free, but not free.
 - (b) Give an example of a nonzero finitely generated $\mathbb{Z}[X]$ -module M and two irreducible elements $f_1, f_2 \in \mathbb{Z}[X]$ such that $f_1 f_2$ kills M, but M does not decompose as a product $M_1 \times M_2$ such that f_1 kills M_1 and f_2 kills M_2 .

QR Exam Algebra January 4, 2017 Afternoon

- (1) Fix a field k and A be the ring $k[X]/(X^p 1)$. Classify all simple A-modules in the following two cases:
 - (a) $k = \mathbb{Q};$
 - (b) $k = \mathbb{F}_p$, the field with p elements.
 - (An A-module M is simple if it has exactly 2 submodules, namely 0 and M itself.)
- (2) Let K be a separably closed field, so K does not have any finite separable field extension other than K itself. Let L/K be a finite nontrivial extension of fields.
 - (a) Show that the trace map $\text{Tr}: L \to K$ is the zero map.
 - (b) Give an example of such a field extension L/K.
- (3) Let V_n be the space of polynomials in x of degree at most n with real coefficients. Define a linear map $\phi : V_n \to V_n$ by $\phi(f) = xf' + f''$. Show that there exists $\lambda_0, \lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and a basis $\{f_0, f_1, \ldots, f_n\}$ of V_n such that $\phi(f_i) = \lambda_i f_i$ for all $i = 0, 1, \ldots, n$.
- (4) Suppose that V is a finite dimensional real vector space equipped with a symmetric bilinear form (\cdot, \cdot) .
 - (a) Show that there exists a bilinear form $(\cdot, \cdot)_{\star}$ on $\bigwedge^2 V$ with the property

$$(v_1 \wedge v_2, w_1 \wedge w_2)_{\star} = (v_1, w_1)(v_2, w_2) - (v_1, w_2)(v_2, w_1).$$

(b) Give the signature of $(\cdot, \cdot)_{\star}$ in terms of the signature of (\cdot, \cdot) .

(5) Show that an abelian group of order 100 cannot act faithfully on a set with 13 elements.

(1) (a) Suppose that $a \in \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_d$. Consider the chain

$$(a) \supseteq (a^2) \supseteq (a^3) \supseteq (a^4) \supseteq \cdots$$

Because there are only finitely many ideals, $(a^m) = (a^{m+1})$ for some m. It follows that $a^m = a^{m+1}b$ for some $b \in R$. We have $(1 - ab)a^m = 0$. If 1 - ab is not invertible, then $1 - ab \in \mathfrak{m}_r$ for some r. But then we have $a \in \mathfrak{m}_r$ and $1 = (1 - ab) + ab \in \mathfrak{m}_r$. Contradiction. So 1 - ab is invertible and $a^m = 0$.

(b) Suppose that R does not contain a nonzero nilpotent element. Then by part (a), $\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_r = (0)$. Since $\mathfrak{m}_i + \mathfrak{m}_j = R$ for $i \neq j$, we have

$$R = R/\mathfrak{m}_1 \times R/\mathfrak{m}_2 \times \cdots \times R/\mathfrak{m}_d$$

because of the Chinese Remainder Theorem. Each field R/\mathfrak{m}_i has exactly 2 ideals, and R has 2^d ideals.

- (2) Let S be the 2-Sylow subgroup of G. The group G acts on S by conjugation. The center Z(S) of S is a characteristic subgroup of S (i.e., it is fixed by any automorphism). So Z(S) is also normalized by G. The groups G and G/S act on Z(S) by conjugation. This yields a group homomorphism γ : G/S → Aut(Z(S)). We have Z(S) ≅ Z/2Z^d where 1 ≤ d ≤ 3. The cardinality of Aut(Z(S)) is (2⁴ − 1)(2⁴ − 2)(2⁴ − 2²)(2⁴ − 2³), (2³ − 1)(2³ − 2)(2³ − 2²), (2² − 1)(2² − 2) or (2 − 1). All these numbers are realtively prime to |G/Z(S)| = 11 ⋅ 13 ⋅ 17 ⋅ 19. So the image of γ is trivial, and G/S and G act trivially on Z(S) by conjugation. This implies that Z(G) = Z(S) is nontrivial.
- (3) We can view $\mathbb{F}_{3^{18}}$ as an \mathbb{F}_3 -vector space. The Frobenius map $\phi : \mathbb{F}_{3^{18}} \to \mathbb{F}_{3^{18}}$ is \mathbb{F}_3 -linear and has order 18. So ϕ satisfies the polynomial $X^{18} 1 = (X 1)^9 (X + 1)^9$. The eigenvalues of ϕ are 1 and -1. The Jordan normal form of ϕ has Jordan blocks with eigenvalues 1 and -1. The ker $(\phi^2 I)$ is the field \mathbb{F}_{3^2} , which is 2-dimensional. This implies that there is one 9×9 Jordan block with eigenvalue 1, and one 9×9 Jordan block with eigenvalue -1. From this it is clear the the dimension of the kernel of $\psi^d = (\phi I)^d$ is equal to d if $d \leq 9$ and equal to 9 if $d \geq 9$. For $d \geq 9$, ker $(\psi^d) = \ker(\psi^9) = \ker(\phi^9 I) = \mathbb{F}_{3^9}$ is a subfield. For d = 3, ker $(\psi^3) = \mathbb{F}_{3^3}$ is a subfield, and for d = 1, ker $(\psi) = \mathbb{F}_3$ is a subfield. The field $\mathbb{F}_{3^{18}}$ has a subfield of order 3^d if and only if d divides 18. So for d = 4, 5, 6, 7, 8 there is no subfield with 3^d elements and the kernel of ψ^d is not a subfield. For d = 2, the kernel of ψ^2 has 9 elements, but is not equal to the field \mathbb{F}_{3^2} . Indeed, if $a \in \mathbb{F}_9 \setminus \mathbb{F}_3$, then we have $\psi^2(a) = (\phi^2 + \phi + I)(a) = (\phi I)(a) \neq 0$. So ker (ψ^d) is a subfield for d = 1, d = 3 and $d \geq 9$.
- (4) Let $K = \mathbb{Q}(\sqrt[4]{2}, i)$ be the splitting field of $X^4 2$. Then K/\mathbb{Q} is clearly a Galois extension. Since $X^4 - 2$ is irreducible of degree 4 by Eisenstein's criterion, $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ has degree 4. Since *i* is not real, $i \notin \mathbb{Q}(\sqrt[4]{2})$ and $K/\mathbb{Q}(\sqrt[4]{2})$ is an extension of degree 2. The extension K/\mathbb{Q} has degree $4 \cdot 2 = 8$. Let $\alpha_k = i^{k-1}\sqrt[4]{2}$ for k = 1, 2, 3, 4. Then complex conjugation σ corresponds to the permutation (2 4). There exists an automorphism τ that sends α_1 to α_2 . We may replace τ by $\tau\sigma$ and assume that $\tau(i) = i$. Then τ is the permutation (1 2 3 4). Now σ and τ generate a Dihedral group D_4 of order 8. Every subgroup of D_4 of index 2 contains τ^2 . The group $D_4/\langle \tau^2 \rangle$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ with generators τ and σ . The quadratic extension Lhave to be $K^{\langle \tau \rangle} = \mathbb{Q}(i), K^{\langle \tau \sigma \rangle} = \mathbb{Q}(i\sqrt{2})$ or $K^{\langle \tau^2, \sigma \rangle} = \mathbb{Q}(\sqrt{2})$.

- (5) (a) Take $M = (2, X) \subseteq \mathbb{Z}[X]$. Since $\mathbb{Z}[X]$ is free and therefore torsion-free, so is the ideal M. If M is free then we have (2, X) = (f) for some polynomial f. But then f divides 2 and X. But then f has to be a constant dividing X and therefore has to be equal to ± 1 . It follows that $1 \in (2, X)$. But it is easy to see that this is not the case. $\mathbb{Z}[X]/(2, X)$ is isomorphic to the field \mathbb{F}_2 .
 - (b) Let $M = \mathbb{Z}[X]/(2X)$, $f_1 = 2$ and $f_2 = X$. Clearly, 2X kills M. Suppose that $M = M_1 \times M_2$ with $2M_1 = XM_2 = 0$. Then we can write $1 = a_1 + a_2$ with $2a_1, Xa_2 \in (2X)$. It follows that $2X = 2X(a_1 + a_2) = (2a_1)X + (Xa_2)2 \in (2X)(2, X)$ and $1 \in (2, X)$. Contradiction.

(1) (a) If $k = \mathbb{Q}$, then $X^p - 1 = (X - 1)(X^{p-1} + X^{p-2} + \dots + 1)$ is the factorization into irreducibles, and we have

$$R = k[X]/(X^p - 1) \cong k[X]/(X - 1) \times k[X]/(X^{p-1} + X^{p-2} + \dots + 1) = k \times L$$

is a product of 2 fields. Now k and L are simple modules. If M is a simple module, then we can choose $a \in M$ nonzero, and the map $f \mapsto fa$ gives a surjective module homomorphism $R \to M$. The only quotients of R are k and L.

- (b) If $k = \mathbb{F}_p$, then $X^p 1 = (X 1)^p$. Now k is a simple *R*-module. If M is any simple module then we have a surjective module homomorphism $R \to M$. The kernel is a maximal ideal, and has to be (X 1). This shows that M is isomorphic to the module k.
- (2) Let p be the characteristic of the field K.
 - (a) Suppose that L/K is a nontrivial extension. Let $a \in L$ and define M = K(a). If $L \neq M$, then we have $\operatorname{Tr}_{L/M}(a) = [L : M]a = 0$ because [L : M] is divisible by p. We have $\operatorname{Tr}_{L/K}(a) = \operatorname{Tr}_{M/K} \operatorname{Tr}_{L/M}(a) = 0$. Suppose that L = M and $[L : K] = p^r$. Let f(X) be the minimum polynomial of a. Since the extension is inseperable we have f'(X) = 0. In particular, the coefficient of X^{p^r-1} , which is $-\operatorname{Tr}(a)$ is equal to 0.
 - (b) Let F be the algebraic closure of the field $\mathbb{F}_2(X)$, and let $K \subset F$ be the separable closure of $\mathbb{F}_2(X)$. It consists of all $a \in F$ such that $F_2(X, a)/F_2(X)$ is separable. Let $L = K(X^{1/p})$. Then L/K is a inseperable, nontrivial extension.
- (3) Let us choose the basis $1, x, x^2, \ldots, x^n$ of V_n . With respect to this basis, ϕ has the matrix

$$\begin{pmatrix} 0 & 0 & 2 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 6 & 0 & \cdots \\ 0 & 0 & 2 & 0 & 12 & \cdots \\ 0 & 0 & 0 & 3 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

So the matrix is upper triangular with diagonal entries 0, 1, 2, ..., n. The diagonal entries are the eigenvalues and they are all distinct. This implies that ϕ is diagonalizable. This means that there exists a basis $f_0, f_1, ..., f_n$ with $\phi(f_i) = \lambda_i f_i$. The eigenvalues $\lambda_0, \lambda_1, ..., \lambda_n$ are equal to 0, 1, ..., n.

(4) (a) For fixed $v_1, v_2 \in V$, define $f_{v_1, v_2} : V \times V \to \mathbb{R}$ by

$$f_{v_1,v_2}(w_1,w_2) = (v_1,w_1)(v_2,w_2) - (v_1,w_2)(v_2,w_1).$$

It is easy to see that f_{v_1,v_2} is bilinear. Also $f_{v_1,v_2}(w,w) = 0$, so it is also alternating. So there exists a unique linear function $F_{v_1,v_2} : \bigwedge^2 V \to \mathbb{R}$ such that

$$F_{v_1,v_2}(w_1 \wedge w_2) = (v_1, w_1)(v_2, w_2) - (v_1, w_2)(v_2, w_1)$$

Similarly, using this unqueness, we see that the map $V \times V \to (\bigwedge^2 V)^*$ defined by

$$(v_1, v_2) \underset{5}{\mapsto} F_{v_1, v_2}$$

is bilinear and alternating. So there exists a linear map $\psi : \bigwedge^2 V \to (\bigwedge^2 V)^*$ such that

$$\psi(v_1 \wedge v_2) = F_{v_1, v_2}.$$

If $a, b \in \bigwedge^2 V$, then we define $(a, b)_{\star} = \psi(a)(b) \in \mathbb{R}$. It is now clear that $(\cdot, \cdot)_{\star}$ is bilinear, and

 $(v_1 \wedge v_2, w_1 \wedge w_2)_{\star} = \psi(v_1 \wedge v_2)(w_1 \wedge w_2) = F_{v_1, v_2}(w_1 \wedge w_2) = (v_1, w_1)(v_2, w_2) - (v_1, w_2)(v_2, w_1).$

(b) Suppose that the signature of (\cdot, \cdot) is (p, q, r) (p positive, q negative, r zero eigenvalues) where p, q, r = n. Let $a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_q, c_1, c_2, \ldots, c_r$ be an orthogonal basis with $(a_i, a_i) = 1$, $(b_j, b_j) = -1$ and $(c_k, c_k) = 0$ for all i, j, k. A basis of $\bigwedge^2 V$ is given by

vector	index range	cardinality	sign
$a_i \wedge a_j$	$(1 \le i < j \le p)$	$\binom{p}{2}$	+1
$a_i \wedge b_j$	$(1 \le i \le p, 1 \le j \le q)$	pq	-1
$a_i \wedge c_j$	$(1 \le i \le p, 1 \le j \le r)$	pr	0
$b_i \wedge b_j$	$(1 \le i < j \le q)$	$\begin{pmatrix} q \\ 2 \end{pmatrix}$	+1
$b_i \wedge c_j$	$(1 \le i \le q, 1 \le j \le r)$	\overline{qr}	0
$c_i \wedge c_j$	$(1 \le i < j \le r)$	$\binom{r}{2}$	0

So the signature of $(\cdot, \cdot)_{\star}$ is $\binom{p}{2} + \binom{q}{2}, pq, pr + qr + \binom{r}{2}$.

(5) Suppose that G is an abelian group of order 100 acting faithfully on a set with 13 elements. This gives an injective group homomorphism $\phi: G \to S_{13}$. Let H be the 5-Sylow subgroup of G. Since 13! has only 2 factors 5, the image $\phi(H)$ is a 5-Sylow subgroup. Since the 5-Sylow subgroup is unique up to conjugation, we may assume without loss of generality that $\phi(H)$ is generated by $(1\ 2\ 3\ 4\ 5)$ and $(6\ 7\ 8\ 9\ 10)$. The centralizer of $\phi(H)$ in S_{13} is isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times S_3$ and has 150 elements. The image $\phi(G)$ has 100 elements. On the other hand, $\phi(G)$ is contained in the centralizer of $\phi(H)$ and its order has to divide 150. Contradiction.