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Problem 1.
(a) Suppose I is an ideal in a principal ideal domain R such that I2 = I. Show that I = (0)
or I = R.
(b) Give an example of an ideal I in a commutative ring R such that I2 = I but I is not (0)
or R.

Solution.
(a) Since R is a PID, we have I = (a) for some a ∈ R, and so I2 = (a2). Thus (a) = (a2),
and so ua = a2 for some unit u of R. If a = 0 then I = (0). Otherwise, we can divide by a
and we find u = a, so I = (u) = R.
(b) Take R = C×C and I to be the ideal generated by the element (1, 0).

Problem 2. Suppose that A is an invertible symmetric n×n matrix with real entries. Show
that there exist invertible real matrices R and S such that In = RARt − SASt, where In is
the n× n identity matrix.

Solution. Suppose that the signature of A is (p, n− p, 0), i.e., it has p positive eigenvalues
and n− p negative eigenvalues. Define

B =

(
2Ip 0
0 −In−p

)
, C =

(
Ip 0
0 −2In−p

)
.

Then we have I = B − C. The matrices A,B,C all have the same signature, so B = RARt

for some invertible real matrix R and C = SASt for some invertible matrix S.

Problem 3. Let A be a 2×2 matrix with real entries. Suppose there exist non-zero vectors
v, w ∈ R2 such that ‖Anv‖ → 0 as n→∞ and ‖Anw‖ → ∞ as n→∞, where ‖ · ‖ denotes
the length of a vector. Show that A is diagonalizable over the reals, i.e., there exists an
invertible real matrix S such that SAS−1 is diagonal.

Solution. We first note that if B is conjugate to A then there still exist vectors v′, w′ such
that ‖Bnv′‖ → 0 and ‖Bnw′‖ → ∞. Indeed, if B = SAS−1 then take v′ = Sv and w′ = Sw.
We have Bnv′ = S(Anv), which goes to 0 because Anv does, and Bnw′ = S(Anw), which
goes to ∞ because Anw does. We are therefore free to replace A with a conjugate matrix
throughout.

Now suppose that A has non-real eigenvalues. Then A is conjugate to a matrix of the form
λR where λ is a scalar and R is a rotation matrix. However, this is impossible: if |λ| ≤ 1
then w cannot exist and if |λ| ≥ 1 then v cannot exist.

Next suppose that A has a repeated eigenvalue λ. If A is a scalar matrix, the reasoning
in the previous paragraph applies and yields a contradiction. Otherwise, A is conjugate to(

λ 1
0 λ

)
.

In fact, the reasoning in the previous paragraph still applies: if |λ| ≤ 1 then w cannot exist,
while if |λ| ≥ 1 then v cannot exist.



We thus conclude that A has distinct real eigenvalues, and is therefore diagonalizable over
the reals.

Problem 4. Suppose a, b ∈ Q and ζ = e2πi/3 is a primitive third root of unity. Let
L = Q(ζ, 3

√
a, 3
√
b).

(a) Show that the field extension L/Q is Galois.
(b) Suppose that none of the numbers a, b, ab, ab2 is a third power of a rational number.

Show that L/Q has degree 18.

Solution. (a) Let Ka, Kb be the fields Q(ζ, 3
√
a) and Q(ζ, 3

√
b) respectively. These are the

splitting fields of x3 − a and x3 − b respectively. It follows that the extensions Ka/Q and
Kb/Q are Galois. Therefore, the compositum L = KaKb is also a Galois extension over Q.

(b) Since L is a Galois extension over Q, it is also Galois over Q(ζ). Let G be the Galois
group of the extension L/Q(ζ). The extensions Ka/Q(ζ) and Kb/Q(ζ) have degree 1 or 3,
so L is an extension of degree 1, 3 or 9 of Q(ζ). If L is not an extension of degree 9 then
G has order at most 3 and G is cyclic. Let σ be a generator of G. We have σ( 3

√
a) = ζj 3

√
a

and σ( 3
√
b) = ζk 3

√
b. It is easy to verify from this that the cube root of at least one of the

elements a, b, ab, ab2 must be invariant under σ. That cube root lies in Q(ζ) ∩R = Q.

Problem 5. Let S3 act on V = C2 ⊗C2 ⊗C2 by permuting the tensor factors. Show that
there are infinitely many subspaces W of V that are stable by S3 (that is, gW ⊂ W for all
g ∈ S3).

Solution. Suppose that v is an element of V . Then the span of gv, over g ∈ S3, is clearly
an S3-stable subspace of V and has dimension at most 6. We thus see that every vector of
V is contained in a proper stable subspace of V . (Note that V has dimension 8.)

Let W1, . . . ,Wn be proper stable subspaces of V . Since C is an infinite field, V is not the
union of W1, . . . ,Wn. We can therefore pick v ∈ V not belonging to W1, . . . ,Wn. Let Wn+1

be a proper S3-stable subspace containing v, which exists by the first paragraph. Obviously,
Wn+1 is not equal to any Wi with 1 ≤ i ≤ n, since Wn+1 contains v and the other Wi do
not. Continuing in this manner, we produce an infinite number of invariant subspaces.
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Problem 1. Show that every group of order 224 = 25 · 7 has an element of order 14.

Solution. Let G be a group of order 224 and S be the set of 7-Sylow subgroups of G.
The cardinality of S divides 32 and is congruent to 1 modulo 7, so it has to be 1 or 8. Let
H be a 2-Sylow subgroup of G. It has 32 elements, and it acts on S by conjugation. Let
N ∈ S be a 7-Sylow subgroup, and let U be its stabilizer subgroup in H. The H-orbit of
N ∈ S has at most 8 elements, so the stabilizer U has at least 32/8 = 4 elements. The group
U normalizes N . Let ϕ : U → Aut(N) be the group homomorphism associated with the
conjugation action of U on N . Since Aut(N) has 6 elements, and the number of elements of
U is divisible by 4, the group homomorphism ϕ : U 7→ Aut(N) cannot be injective. We can
choose a nontrivial element of order 2 in the kernel of ϕ. We can also choose g be a generator
of N . Then h and g commute, h has order 2 and g has order 7. Then hg has order 14.

Problem 2. Suppose that A is a 6×6 complex matrix with minimum polynomial x6 +x5−
x4 − x3. Determine the characteristic polynomial and minimal polynomial of A2.

Solution. Let p(x) = x6+x5−x4−x3 = x3(x+1)2(x−1). Since the minimum polynomial has
degree 6, p(x) must also be the characteristic polynomial. The Jordan normal form of A has
Jordan blocks J3(0), J2(−1), J1(1), where Jm(λ) is the m×m Jordan block with eigenvalue
λ. The Jordan normal form of J3(0)2 has blocks J2(0) and J1(0), the Jordan normal form of
J2(−1)2 is J2(1) and the Jordan normal form of J1(1)2 is J1(1). The characteristic polynomial
of A2 is x2 · x · (x − 1)2 · (x − 1) = x3(x − 1)3. The minum polynomial of A2 is the least
common multiple of x2, x, (x− 1)2, (x− 1), which is x2(x− 1)2.

Problem 3. Suppose A and B are invertible 2× 2 complex matrices.

(a) Show that there exists a linear transformation F : C2 ⊗ C2 → C2 ⊗ C2 such that
F (v ⊗ w) = (Av)⊗ (Bw)− (Bv)⊗ (Aw).

(b) Show that the rank of F is at most 2.

Solution. (a) Define a linear map f : C2 × C2 → C2 ⊗ C2 by f(v, w) = (Av) ⊗ (Bw) −
(Aw) ⊗ (Bv). Then it is easy to verify that f is bilinear. So there exists a linear map
F : C2 ⊗C2 → C2 ⊗C2 that satisfies F (v ⊗ w) = f(v, w) for all v, w ∈ C2.

(b) It is clear that F (v⊗ v) is an anti-symmetric tensor in C2⊗C2. The space
∧2(C2) of

anti-symmetric tensors has dimension 1. The subspace of C2 ⊗C2 spanned by pure tensors
of the form v ⊗ v is the space Sym2(C2) of symmetric tensors, which has dimension 3 (one
can see this simply by taking v to be e1, e2, and e1 + e2, where e1 and e2 are a basis for C2).
Thus F induces a map Sym2(C2) →

∧2(C2), the kernel of which has dimension at least 2.
Thus the kernel of F has dimension at least 2, and so the rank of F is at most 2.

Problem 4. Let F be the field C(x1, . . . , xn). Let Sn act on this field by permuting the
variables, and let E = F Sn be the fixed field. Suppose that Φ ∈ E[T ] is a polynomial of
degree at most n− 1 such that Φ(xi) = Φ(xj) for all 1 ≤ i, j ≤ n. Show that Φ is constant.

Solution. Let a = Φ(x1), an element of F . If σ ∈ Sn then aσ = Φ(xσ(i)) = Φ(x1) = a.
Thus a belongs to E, and so the polynomial Ψ(T ) = Φ(T )−a still has coefficients in E. But



Ψ(x1) = 0 and x1 has degree n over E, and so Ψ(T ) = 0, which shows that Φ is constant.
(If x1 had degree < n over E then the Galois closure of E(x1) would have degree < n!, but
the Galois closure if clearly F , which has degree n!.)

Problem 5. Consider the polynomial p(x) = x9 + 1 ∈ F2[x].

(a) Show that p(x) splits over the field F64.
(b) Show that p(x) = (x + 1)(x2 + x + 1)(x6 + x3 + 1) is the irreducible factorization of

p. (It is enough to show that the three factors are irreducible, you don’t have to do
the multiplication!)

(c) How many units does the ring F2[x]/(p(x)) have?

Solution. (a) p(x) divides x64 − x and x64 − x factors over F64 into linear factors.
(b) Obviously x+ 1 is irreducible, and x2 + x+ 1 is irreducible because it is quadratic but

does not have a root. Let α be a root of x6+x3+1.The Frobenius automorphism φ generates
the Galois group of F64 over F2 and has order 6. Now, α is not a root of x4 + x or x8 + x
because these polynomials are relatively prime to x6 + x3 + 1. Therefore, α does not lie in
any proper subfield of F64. So the degree of α over F2 is 6 and x6 + x3 + 1 is irreducible.

(c) By the Chinese Remainder Theorem,

F2[x]/(p(x)) ∼= F2 × F2[x]/(x2 + x+ 1)× F2[x](x6 + x3 + 1) ∼= F2 × F4 × F64

and
F2[x]/(p(x))? ∼= F?

2 × F?
4 × F?

64

so there are 1 · (4− 1) · (64− 1) = 3 · 63 = 189 units.


