
AIM Qualifying Review Exam in Differential Equations & Linear Algebra

August 2022

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet. No credit will be given for answers without

supporting work and/or reasoning.

Problem 1

Consider a real matrix C =

[
A B
BT 0

]
where A is a symmetric square matrix, B is not necessarily square,

and BT is the transpose of B.

(a) (8 points) Show that C is singular if the number of columns of B is strictly larger than the number of
its rows.

(b) (12 points) Show that if A is strictly positive definite, then C is nonsingular if and only if the columns
of B are linearly independent.

Solution

(a) Let B have m rows and n columns, n > m. Note that C is (m+ n)-by-(m+ n). Since n > m, there is a
nonzero vector v ∈ Rn that is not in the span of the rows of B. We can assume v is orthogonal to each
of the rows of B by subtracting its orthogonal projection on the span of the rows of B. Now form a
nonzero vector w = [0;v] ∈ Rm+n by prepending m zeros to v. w is a nonzero vector in the null space
of C, so C is singular.

(b) Assume C is nonsingular. Then the columns of C are a linearly independent set. Then the columns
of B are a linearly independent set also, which we prove by contradiction. Assume that a nontrivial
linear combination of columns of B equals the zero vector in Rm. It corresponds to a nontrivial linear
combination of the last n columns of C, of the form [B;0], that equals the zero vector in Rm+n, which
is a contradiction.

Now assume C is singular, i.e. C

[
x
y

]
= 0 with at least one of x and y nonzero. If x = 0 we have

By = 0 with y nonzero, so the columns of B are linearly dependent. If x is nonzero, note that BTx = 0
and Ax = −By. Multiplying by xT we get xTAx = 0 which contradicts the positive definiteness of A.
So x = 0.
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Problem 2

Let A be a 2-by-2 matrix with complex entries that is Hermitian: A = A∗. Let a be a column vector, and
let B = A + aa∗. Denote the eigenvalues of A and B by (α1, α2) and (β1, β2) respectively.

(a) (5 points) Show that aa∗ is a 2-by-2 matrix that is positive semi-definite. Explain why the eigenvalues
of A and B are real.

(b) (10 points) Assume that the eigenvalues of A and B are ordered so that α1 ≤ α2 and β1 ≤ β2. Show
that α1 ≤ β1 ≤ α2 ≤ β2.

(c) (5 points) Find the eigenvalues and eigenvectors of B if α1 = α2.

Solution

(a) In order for A + aa∗ to make sense, aa∗ must by 2-by-2. One eigenspace is spanned by a and has
eigenvalue a∗a ≥ 0. The other eigenspace is the one-dimensional subspace a⊥ of vectors orthogonal to
a and has eigenvalue 0. Since A and B are Hermitian, all the eigenvalues are real.

(b) The minimax theorem says α1 and α2 are respectively the min and max over x ∈ C2 of (Ax,x)/(x,x),
and likewise for β1 and β2 with respect to the same ratio (the Rayleigh quotient) but with B in place of
A. β1 = minx (Ax,x)/(x,x) + (a∗x,a∗x)/(x,x) ≥ minx (Ax,x)/(x,x) = α1. If we choose a nonzero
vector x0 ∈ a⊥, we have β1 ≤ (Ax0,x0)/(x0,x0) + (a∗x0,a

∗x0)/(x0,x0) = (Ax0,x0)/(x0,x0) ≤ maxx

(Ax,x)/(x,x) = α2. Finally, β2 = maxx (Ax,x)/(x,x)+(a∗x,a∗x)/(x,x) ≥maxx (Ax,x)/(x,x) = α2.

(c) If α1 = α2, A = α1I, a multiple of the identity matrix, so one eigenspace of B is spanned by a and has
eigenvalue α1 + a∗a. The other eigenspace is the one-dimensional subspace a⊥ and has eigenvalue α1.

Problem 3

(a) (10 points) Find the first three nonzero terms in each independent series solution about x = 0 for the
following differential equation

d2y

dx2
+ 3x

dy

dx
− y = 0.

(b) (10 points) Find three independent real solutions to the equation

x3
d3y

dx3
+ 6y = 0.

valid in the domain x > 0.

Solution

(a) We plug y = a0 + a1x+ a2x
2 + . . . into the equation and satisfy the equation at each power of x. At x0

we obtain a2 = a0/2. At x1 we obtain a3 = −a1/3. Continuing in this way we find a4 = −5a0/24 and
a5 = 2a1/15. There are two nontrivial series solutions, one proportional to 1 + x2/2− 5x4/24 + . . . and
the other proportional to x− x3/3 + 2x5/15 + . . ..

(b) x = 0 is a regular singular point, so we try a solution of the form y = xr, and obtain r3−3r2+2r+6 = 0.
By trial and error we find a root r = −1, and factor the term r+1 from the cubic to obtain the quadratic

r2− 4r+ 6 with roots 2±
√

2i. We have three independent solutions: x−1, x2+
√
2i, x2−

√
2i. The last two

need to be manipulated to obtain real solutions. We write x2±
√
2i = x2e±

√
2i log x and Euler’s identity

gives the two independent real solutions x2 sin(
√

2 log x) and x2 cos(
√

2 log x).

2



Problem 4

Find the general solution to the system of differential equations

dx

dt
= y +

x√
x2 + y2

(x2 + y2 − 4),

dy

dt
= −x+

y√
x2 + y2

(x2 + y2 − 4).

Describe the qualitative behavior of solutions for all initial conditions (x, y)|t=0 = (x0, y0) ∈ R2.
Solution

Using polar coordinates, we have rdr/dt = xdx/dt+ydy/dt so dr/dt = r2−4. Thus r = 2 is a fixed point
of r, r decreases with time for 0 < r < 2, and r increases with time for r > 2. The ODE for r is separable
and can be solved using partial fractions. We obtain r = 2(1+Ke4t)/(1−Ke4t) where K = (r0−2)/(r0 +2)
with r0 = r(0). The angular coordinate θ = arctan(y/x) satisfies θ′ = (xy′ − yx′)/r2 = −1, so θ = θ0 − t.
One could now use x = r cos θ and y = r sin θ to write the solutions in terms of x and y. Hence the circle
r = 2 is a periodic orbit and trajectories that start on this circle remain on the circle. Initial conditions with
r0 > 2 spiral outwards with distance from the origin growing exponentially in time. Initial conditions with
r0 < 2 spiral inwards and reach the origin at a time t = log(−1/K)/4. At the origin, the system of ODEs
has a singularity, as the limit of (dx/dt, dy/dt) there along a line of constant θ is -2êr, which varies with
θ. Therefore, the problem is not well-posed for initial condition at the origin or when the inward spirialing
solutions reach the origin.

Problem 5

Solve the PDE

∂xxu+ 2∂xu+ ∂yyu = 0

for u(x, y) on the square domain 0 ≤ x, y ≤ 1 with the boundary conditions:

u(x, 0) = 0 ; u(x, 1) = 1 ;

u(0, y) = 0 ; u(1, y) = 1.

Solution
We decompose the solution as u = u1 + u2, where u1 and u2 satisfy the same PDE but are zero on three
sides: u1 = 1 on the x = 1 edge and u1 = 0 on the other three sides, and u2 = 1 on the y = 1 edge and
u2 = 0 on the other three sides. By symmetry, u2(x, y) = u1(y, x), so we only need to find u1 and then we
have the solution as u(x, y) = u1(x, y) + u1(y, x).

We solve for u1 using separation of variables: u1(x, y) = X(x)Y (y). We have

X ′′

X
+ 2

X ′

X
= −Y

′′

Y
= k2.

for a constant k. Since we have homogeneous boundary conditions at y = 0 and 1, we have nontrivial
solutions for Y only for k = nπ with n = 1, 2, . . .; they are Y (y) = sin(nπy). The two corresponding

solutions for X are X(x) = e(−1±
√
1+n2π2)x. We take the superposition that automatically satisfies X(0) = 0:

X(x) = e−x sinh(
√

1 + n2π2x). So we write u1 =
∑∞
n=1 ane

−x sinh(
√

1 + n2π2x) sin(nπy) and choose the an
to satisfy u1(1, y) = 1, i.e. ∑

ane
−1 sinh

√
1 + n2π2 sin(nπy) = 1.
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Multiply both sides by sin(nπy) and integrate from 0 to 1 in y to obtain

an = 4/(nπe−1 sinh
√

1 + n2π2), n odd,

an = 0, n even.

So the final solution is

u =

∞∑
n=1

an

[
e−x sinh(

√
1 + n2π2x) sin(nπy) + e−y sinh(

√
1 + n2π2y) sin(nπx)

]
.

with the an above.
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