Syllabus for the AIM Preliminary Examination in Probability & Discrete Mathematics

Algorithms

(Much of Chapters 2,3,4,5,6,7,8, and 13 of Kleinberg and Tardos.)

- 1. Basics
 - Computational tractability
 - Asymtotic order of growth
 - Common running times: $\log(n), \log^{O(1)}(n), O(n), n^{O(1)}, 2^{O(n)}, n!, 2^{n^{O(1)}}$
 - Basic data structures: lists, arrays, priority queues
- 2. Graphs (see also Combinatorics syllabus)
 - Definitons
 - Directed and undirected graphs; directed acyclic graphs and topological ordering
 - Connectivity and traversals
- 3. Greedy algorithms
 - Overall approach
 - Examples: scheduling, shortest paths, minimum spanning trees, Huffman codes
- 4. Divide and conquer
 - Master theorem (from Cormen, Leiserson, Rivest, and Stein)
 - Merge sort
 - Fast Fourier transform
- 5. Dynamic programming
 - Overall approach; memoization
 - Examples: sequence alignment (longest common subsequence), shortest paths in a graph
- 6. Network flow
 - Ford-Fulkerson algorithm
 - Bipartite matchings
- 7. NP
 - NP definitions; hardness, completeness, reductions
 - Reductions among problems; satisfiability, coloring, partitioning.
- 8. Randomized algorithms (See also Probability section.)
 - Chernoff bounds
 - $\bullet\,$ Examples: median, quicksort, hashing, MAX3SAT

Probability

(Much of chapters 1–6 of Ross. See also Combinatorics section.)

- 1. Axioms of probability
 - Sample spaces, events
- 2. Conditional probability
 - Bayes's formula
 - Independent events
- 3. (Discrete) Random variables
 - Expectation and variance; relationship with sums of random variables
 - Common random variables: Bernoulli, binomial, Poisson, geometric
 - Cumulative distribution functions
- 4. Continuous random variables
 - Expectation and variance
 - Examples: uniform, normal, exponential
 - Normal approximation to binomial; central limit theorem
 - Distribution functions
- 5. Jointly distributed random variables
 - Joint distribution functions
 - Independence
 - Sums of independent random variables
 - Conditional distributions

Combinatorics

(Much of chapters 1–7 and 11 of Brualdi; basic error-correcting codes)

- 1. Permutations and combinations
 - Basic counting principles
 - Functions, sets and multisets
- 2. Pigeonhole principle and Ramsey's theorem
- 3. Generating permutations and combinations
 - Inversions
 - Partial orders and Hasse diagrams
- 4. Binomial coefficients
 - Pascal's triangle
 - Binomial theorem
 - Unimodality of binomial coefficients

- Multimonial theorem
- 5. Inclusion-exclusion principle
 - Combinations with repetition
 - Derangements
 - Permutations with forbidden positions
 - Möbius inversion
- 6. Recurrence relations and generating functions
 - Exponential generating functions
 - Solving homogeneous and simple inhomogeneous recurrence relations
- 7. Graph theory
 - Euler paths and cycles
 - Hamiltonian paths and cycles
 - Trees
 - Coloring
 - Planarity
 - Independence number
- 8. Error-correcting codes
 - Linear error-correcting codes; generators and parity-check matrices
 - Hamming, Hadamard, Reed-solomon, and Reed-Muller codes

Miscellaneous

- 1. Finite fields of prime order
- 2. Basic linear algebra (solving systems, rank, etc.), including over finite fields.