Syllabus for the AIM Preliminary Examination in Advanced Calculus & Complex Variables

Elementary Real Analysis

(Ross)

- 1. Natural, rational, and real numbers. The completeness axiom. The symbols $\pm \infty$.
- 2. Sequences
 - Limits of sequences.
 - Limit theorems for sequences.
 - Monotone sequences. Cauchy sequences.
 - \bullet Subsequences.
 - lim sup and lim inf.
 - Basic topological concepts in metric spaces (open and closed sets, metrics, Cauchy sequences and completeness, Bolzano-Weierstraß theorem, interior and boundary points, open covers, subcovers, and compactness).
 - Infinite series.
 - Alternating series and integral tests.

3. Continuity

- Continuous functions and their properties.
- Uniform continuity.
- Limits of functions.
- 4. Sequences and series of functions
 - Power series, intervals and radii of convergence, comparison tests and other tests for convergence.
 - Uniform and absolute convergence.
 - Differentiation and integration of power series.
 - Weierstraß approximation theorem.

5. Differentiation

- Basic properties of the derivative.
- The mean value theorem.
- L'Hôpital's rule.
- Taylor expansion and Taylor's theorem.

6. Integration

- The Riemann integral and its properties.
- The fundamental theorem of calculus.
- Improper integrals.

Multivariable Calculus

(Stewart)

1. Parametric equations

- Curves and surfaces defined by parametric representations.
- Polar, cylindrical, and spherical coordinates.
- Conic sections.

2. Vector algebra

- Dot and cross products.
- Equations of lines and planes.
- Cylinders and quadric surfaces.

3. Vector functions

- Space and plane curves as vector functions.
- Tangent, normal, and binormal vectors of space curves.
- Arc length and curvature of curves.
- Applications to mechanics: force, velocity and acceleration.

4. Partial differentiation

- Clairaut's Theorem on mixed partial derivatives.
- Tangent planes and linear approximations.
- The chain rule.
- Directional differentiation and gradient vectors.
- Optimization: finding extreme values of functions. Lagrange multipliers.

5. Multiple integrals

- Double and triple integrals and iterated integrals.
- \bullet Change of variables in multiple integrals. Jacobians.
- Surface integrals and change of parametrization.

6. Vector calculus

- Vector fields.
- Line integrals and the fundamental theorem of calculus.
- Green's theorem and its use in applications.
- Curl and divergence of vector fields.
- Stokes' theorem and its use in applications.
- The divergence theorem and its use in applications.

Complex Variables

(Brown and Churchill)

- 1. Complex numbers and complex arithmetic
 - Algebra of complex numbers.
 - Modulus, argument, complex conjugation.
 - Exponential (polar) form.
 - Roots of complex numbers.
- 2. Analytic functions of a complex variable
 - Continuity and differentiability of complex functions.
 - The Cauchy-Riemann equations.
 - Harmonic functions and harmonic conjugation. Maximum principle.
 - Schwarz reflection principle.
- 3. Elementary functions
 - The exponential function.
 - The logarithm and its multivaluedness.
 - Power functions with complex exponents.
 - Trigonometric and hyperbolic functions and their inverses.
- 4. Integration of complex functions
 - Contour integration.
 - Estimation of moduli of contour integrals.
 - Cauchy-Goursat theorem and applications.
 - Simply and multiply-connected domains.
 - Cauchy's integral formula and differentiation.
 - Liouville's theorem. The fundamental theorem of algebra.
 - The maximum modulus principle.
- 5. Infinite series of complex functions
 - Power series and their convergence properties.
 - Taylor and Laurent series.
 - Absolute and uniform convergence of power series.
 - Continuity of sums of power series.
 - Integration and differentiation of power series.
 - Uniqueness of series representation. Analytic continuation.
 - Multiplication and division of power series.
- 6. Singularities of complex functions and applications to integration
 - The three types of isolated singular points.
 - Poles and residues. Cauchy's residue theorem. Computation of residues of simple and higher-order poles. Integration of functions with an infinite number of singularities.

- Essential singularities. Behavior of functions near essential singularities.
- Branch points.
- Evaluation of improper integrals by contour integration.
- Estimation of contour integrals. Jordan's lemma.
- Paths along and around branch cuts.
- Applications to Fourier and Laplace transforms.
- Applications to analytic function theory: the argument principle and Rouché's theorem.

7. Conformal mapping

- Linear and fractional-linear (Möbius) transformations.
- Mappings of the upper half-plane.
- Mappings by elementary functions: exponential, logarithmic, and power functions.
- Square roots of polynomials.
- Riemann surfaces.
- General properties of conformal mappings, invertibility, preservation of angles, transformations of boundary conditions.
- Solution of physical boundary-value problems for Laplace's equation via conformal mapping. Potentials and stream functions. Flow around obstacles. The Joukowski map.
- Polygonal regions and the Schwarz-Christoffel transformation.

8. Boundary-value problems and the Poisson integral formula

- The Poisson integral formula.
- Dirichlet problems for the disk and half-plane.
- The Schwarz integral formula.
- $\bullet\,$ Neumann problems.