TRANSLATION INVARIANT TOTAL ORDERS

GRANT BARKLEY FALL 2025

In this project, we will study translation-invariant total orders (TITOs). Fix an $n \in \mathbb{N}$. A TITO is a binary relation \triangleleft on \mathbb{Z} with the following properties:

- \triangleleft is a *total order*: this means
 - \triangleleft is transitive: If $i, j, k \in \mathbb{Z}$ are such that $i \triangleleft j$ and $j \triangleleft k$, then also $i \triangleleft k$.
 - \triangleleft has trichotomy: If $i, j \in \mathbb{Z}$, then exactly one of $i \triangleleft j, j \triangleleft i$, or i = j is true.
- \triangleleft is invariant under translation by n: For all $i, j \in \mathbb{Z}$, we have $i \triangleleft j$ if and only if $i + n \triangleleft j + n$.

TITOs can be used to model extended weak order and torsion classes related to type \widetilde{A}_{n-1} affine root systems and Coxeter groups.

Let TTot_n be the set of TITOs. The goal of this project is to write code which implements TITOs and useful operations or visualizations of them. For example, there is a partial ordering of TTot_n , called weak order, which is important for applications. Weak order puts $(\lhd_1) \leq (\lhd_2)$ if and only if every inversion of (\lhd_1) is also an inversion of (\lhd_2) . An inversion of a TITO (\lhd) is a pair of integers (a,b) so that a < b and $b \lhd a$. Because a TITO can have infinitely many inversions, it can be non-trivial to check whether $(\lhd_1) \leq (\lhd_2)$. One concrete goal for the project could be to implement this check. We can also consider the lattice property of the weak order on TTot_n . Given any two $\mathsf{TITOs}(\lhd_1), (\lhd_2)$, there will always be a least upper bound for (\lhd_1) and (\lhd_2) in weak order, denoted $(\lhd_1) \vee (\lhd_2)$. A second goal could be to compute $(\lhd_1) \vee (\lhd_2)$ for any pair of $\mathsf{TITOs}(\lhd_1), (\lhd_2)$.

In the case n=2, the weak order on TTot_n looks like this:

We will see how notation like $[\underline{1}][2]$ encodes a TITO during the project. In the case n=3, some TITOs can be visualized using diagrams like the following.

Automating such visualizations could be another direction for the project.

Prerequisites: None. Experience with partial orders, group theory, linear algebra, and coding will be helpful, but isn't required.