
TRANSLATION INVARIANT TOTAL ORDERS

GRANT BARKLEY
FALL 2025

In this project, we will study translation-invariant total orders (TITOs). Fix an
n ∈ N. A TITO is a binary relation ◁ on Z with the following properties:

• ◁ is a total order : this means
– ◁ is transitive: If i, j, k ∈ Z are such that i ◁ j and j ◁ k, then also

i ◁ k.
– ◁ has trichotomy: If i, j ∈ Z, then exactly one of i ◁ j, j ◁ i, or i = j

is true.
• ◁ is invariant under translation by n: For all i, j ∈ Z, we have i ◁ j if and
only if i+ n ◁ j + n.

TITOs can be used to model extended weak order and torsion classes related to
type Ãn−1 affine root systems and Coxeter groups.

Let TTotn be the set of TITOs. The goal of this project is to write code which
implements TITOs and useful operations or visualizations of them. For example,
there is a partial ordering of TTotn, called weak order, which is important for
applications. Weak order puts (◁1) ≤ (◁2) if and only if every inversion of (◁1) is
also an inversion of (◁2). An inversion of a TITO (◁) is a pair of integers (a, b)
so that a < b and b ◁ a. Because a TITO can have infinitely many inversions, it
can be non-trivial to check whether (◁1) ≤ (◁2). One concrete goal for the project
could be to implement this check. We can also consider the lattice property of the
weak order on TTotn. Given any two TITOs (◁1), (◁2), there will always be a least
upper bound for (◁1) and (◁2) in weak order, denoted (◁1)∨ (◁2). A second goal
could be to compute (◁1) ∨ (◁2) for any pair of TITOs (◁1), (◁2).

In the case n = 2, the weak order on TTotn looks like this:

[1, 2]

[2, 1]

[−1, 4]

[4,−1]

[0, 3]

[3, 0]

[−2, 5]

[2][1][1][2]

[1][2][1][2] [2][1][2][1]

[2][1][1][2]

[2, 1]

[3, 0]

[0, 3]

[5,−2]

[1, 2]

[4,−1]

[−1, 4]

1



2 GRANT BARKLEY

We will see how notation like [1][2] encodes a TITO during the project. In the case
n = 3, some TITOs can be visualized using diagrams like the following.

[1, 2, 3]

[2, 1, 3] [1, 3, 2]

Automating such visualizations could be another direction for the project.

Prerequisites: None. Experience with partial orders, group theory, linear algebra,
and coding will be helpful, but isn’t required.


